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Abstract

Let R be a commutative ring with unity, M and N be (left) unitary R-
modules. Let Homgz (M, N) be the set of all R-homomorphisms from M to N.
it is well-known that the properties of the R-module Homg(M,N) are
determined by the properties of R, M and N, and also some of the properties
of M, N and R are determined by those of Homy (M, N) so for this reason , the
study of Homy(M, N) attracted the attention of many researchers. Some
special studies were appeared for Homz(M,N) in case N is a non-zero
submodule of M. by using the restriction that Homyz (M, N) #0 whenever N is
a non-zero submodule of M, such module M is called retractable module.
While when every non-zero submodule of M contains a copy of M, that means
there exists a monomorphism in Homgz(M,N) whenever N is a non-zero
submodule of M, M is called compressible module in this case. Clearly the
class of compressible modules is contained properly in the class of retractable

modules .Many studies about these notions were given.

Also some generalizations of these concepts were appeared such as
essentially retractable modules, epi-retractable modules, small compressible

and small retractable modules.

In this work, we shall give detailed study about small compressible
modules and small retractable modules. Moreover we shall present other
generalizations for compressible and retractable modules, namely, purely
compressible modules, purely retractable modules, primely compressible

modules and primely retractable modules.
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Introduction

Let R be a commutative ring with unity, M and N be (left) R-modules.
It is well-known that the R-module Homgp(M,N) which consists of all
R-homomorphisms from M to N plays a central role in the study of many
types of modules. By using the restriction that N is a non-zero submodule of
M, some researchers were interested in studying modules for which
Homgz (M, N) # 0, such modules are called retractable modules. While in the
case that Homg (M, N) contains a monomorphism whenever N is a non-zero
submodule of M, equivalently, every non-zero submodule of M contains a
copy of M, such modules are called compressible modules. The concept
compressible module was first used by J. M. Zelmanowitz in (1976) while the
notion retractable module was first used by S. M. Khuri in (1979) since have
many extensive studies were appeared about these two concepts, some of
them were represent generalization for compressible and retractable modules,
for instance, essentially retractable modules, Epi-retractable modules, see [1],
[51, [7], [8], [201, [2'].[2¢].[2°].[21].[3°], [31],[V %], [4)] and [4°].One of the
generalizations of compressible and retractable modules was small
compressible and small retractable modules which were introduced by H. K.
Marhoon in (2014), we shall study these two generalizations in some details
in chapter two of this thesis. By considering special classes of submodules of
M, namely, pure submodules and prime submodules, we shall present and
study the concepts of purely compressible modules, purely retractable

modules, primely compressible modules and primely retractable modules.

The thesis contains four chapters. The first chapter represents
preliminaries concerning compressible and retractable modules; this chapter
consists of three sections. In section one, we present the notion of

compressible modules with some of their known basic properties. In section
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two, we recall retractable modules with many properties of such modules. In

section three, we gave many characterizations of retractable modules.

The following are some results of chapter one:

(1) Let M be an R-module such that End, (M) is a Boolean ring. If M is a

retractable R-module, then every non-zero submodule of M is also retractable,

see Proposition (1.2.V).

(2) Let M be a torsion-free R-module. Then M is retractable if and only if M

is dualizable, see Proposition (1.3.4).

(3) Let R be an integral domain. Then every finitely generated uniform

R-module is retractable, see Proposition (1.3.1Y).

In chapter two, we shall give a detailed study for small compressible
and small retractable modules, the chapter contains three sections. In the first
section, we investigate the basic properties of small compressible modules. In
the second section we shall concerned with the basic properties of small
retractable modules. Some characterizations of small retractable modules are
given in the third section. Moreover we introduce the concept of small epi-

retractable modules with some of its basic properties.
Among other results in chapter two are the following:

(1) Let N be a proper submodule of an R-module M. If M/N is small

compressible, then N is small prime submodule of M. see Theorem (2.1.17).

(2) Let M be an R-module in which every cyclic submodule of M is small in
M. Let N be a small prime submodule of M such that [N: M] 2 [K: M] for
each submodule K of M containing N properly. Then M/N is small
compressible. see Theorem (2.1.18).

II
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(3) Let M be a fully invariant R-module such that f (M) is a direct summand
of M for each f € End . (M). Then M is small retractable if and only if there

exists 0 # f € End , (M) such that f(M) is small retractable, see Proposition
(2.3.3).

(4) If R is a V-ring (or a von-Neumann regular ring), then every small

projective R-module is small retractable, see Proposition (2.3.7).

Purely compressible and purely retractable modules are introduced and
investigated in chapter three of this thesis. The chapter consists of four
sections. Section one is devoted to the notion of purely compressible modules,
we give a detailed study for these modules. We introduce a special type of
purely compressible modules, in section two, namely purely critically
compressible modules. The concept of purely retractable modules is presented
and studied in section three; Finally, in section four, some properties and
characterizations for purely retractable modules are given. Moreover we
introduce the concept of purely epi- retractable modules with some of its basic

properties.
We recall here some of the results of chapter three:

(1)Let M be a module having PSP and N be a proper submodule of an R-
module M. If M/N is purely compressible, then N is purely prime submodule
of M. see Proposition (3.1.26)

(2) Let M be a module such that every cyclic submodule of M is pure in M. If
N is a proper purely prime submodule of M such that [N: M] 2 [K: M] for all
submodules K of M containing N properly. Then M/N is purely compressible.

see Proposition (3.1.27).

II1
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(3) Let M be a faithful finitely generated multiplication R-module. Then M is
purely compressible if and only if for each non-zero pure ideal | of R,
anny, (1) = 0, see Theorem (3.1.37).

(4) Let M be a faithful finitely generated multiplication R-module. Then M is
purely compressible if and only if R is purely compressible ring, see
Proposition (3.1.41).

(5) Let R be a ring in which every principle ideal is pure. Let M be a faithful
finitely generated multiplication R-module such that every submodule of a

pure submodule is also pure. Then the following statements are equivalent:
(i) M is purely compressible.

(i) M is isomorphic to an R-module of the form A/P for some purely prime

ideal P of R and an ideal A of R containing P properly.

(iii) M is isomorphic to a non-zero submodule of a finitely generated purely

uniform, purely prime R-module., see Theorem (3.1.48)

(6) If N is a proper primely pure submodule of a module M such that
[N: M] 2 [K: M] for all submodules K of M containing N properly, then M /N

is purely retractable, see Proposition (3.3.6)

(7) Every finitely presented module is purely retractable, see Corollary
(3.4.6).

(8) Let M be a module such that every non-zero pure submodule of M
contains a non-zero direct summand of M. Then M is purely retractable, see
Proposition (3.4.8).

In the last chapter of this thesis, we introduce and study another
characterization of compressible and retractable modules which are primely

compressible and primely retractable modules, This chapter included five

IV



Introduction

sections. In section one we introduce the concepts of generalized prime
modules and generalized prime submodules as generalization for prime
module and prime submodule. We establish some of their properties which
are needed in the next sections of this chapter. In the second section, we give
the concept primely compressible modules with some examples and basic
properties of such modules are investigated. Section three is devoted for the
concept of primely critically compressible modules. while section four
contains the definition and many properties of primely retractable modules.
Finally, in section five, some properties and characterizations for primely
retractable modules are given. Moreover the notion of primely epi-retractable

modules is presented with establishing some of its properties.
Among the results of chapter four are the following:

(1) Every primely compressible module is primely uniform, see Proposition
(4.2.14)

(2) Let M be a faithful finitely generated multiplication R-module. If M is
primely compressible, then for each non-zero prime ideal | of R,anny (1) =
0, see Theorem (4.2.15).

(3) Let R be a ring such that every non-zero principal ideal of R is prime. If
M is a faithful finitely generated multiplication and ann, (1) = 0 for each
non-zero prime ideal | of R, then M is primely compressible, see Theorem
(4.2.16).

(4) Let M be a faithful finitely generated multiplication R-module then M is
primely compressible if and only if M is generalized prime, see Corollary
(4.2.23)

(5) Let R be a ring in which every principal ideal is prime. Let M be a Z-
regular faithful finitely generated multiplication R-module which satisfy
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condition (*) such that a non-zero cyclic submodule of a direct summand of

M is prime submodule of M. Then the following statements are equivalent:
(i) M is primely compressible.

(i) M is isomorphic to an R-module of the form A/P for some generalized

prime ideal P of R and an ideal A of R containing P properly.

(iii) M is isomorphic to a non-zero submodule of a finitely generated primely

uniform, generalized prime R-module., see Theorem (4.2.27).

(6) Let M be a prime module. If M is primely critically compressible, then M

Is indecomposable but not conversely, see Proposition (4.3.8).

(7) Let M be a primely retractable quasi-Dedekind module. Then M is

generalized prime and primely uniform,see Proposition (4.4.7).

(8) Every prime finitely generated projective module is primely retractable,
see Corollary (4.5.5)

(9) Let M be a module such that every non-zero prime submodule of M
contains a non-zero direct summand of M. Then M is primely retractable, see
Proposition (4.5.6).

(10) Let M be a prime module such that every non-zero submodule of M
contains a non-zero direct summand of M. if M is primely retractable, then M

IS retractable, see Proposition (4.5.7).

(11) Let M be a module satisfying (*). If M primely epi-retractable module,
then every non-zero prime submodule of M is also primely epi-retractable, see
Proposition (4.5.13).

Where a condition (*) means:

VI



Introduction

Let M be a module satisfying VK < N < M if N is a prime submodule of M

and K is a prime submodule of N, then K is a prime submodule of M.

VII



Chapter One Compressible and Retractable Modules

Chapter One

Compressible and Retractable Modules

Introduction

This chapter represents a prelusion for the next chapters in our work. The
chapter contains three sections. In the first section, we present the concept of
compressible modules with some of its known basic properties and some
related concepts which shall be needed later. The second section is devoted to
the concept of retractable modules with many examples of such modules and
many of its properties. In section three we give many characterizations of

retractable modules.

1.1 Compressible Modules

We introduce in this section the concept of compressible modules with
some of its basic properties. Also we recall the definitions of some concepts

that are related to compressible modules.

"Definition (1.1.1)[24]

An R-module M is called compressible if M embedded in each of its
non-zero submodule. That is for each non-zero submodule N of M, there

exists a monomorphism f: M — N".
Aring R is compressible if the R-module R is compressible.

Examples and Remarks (1.1.2)

(1) Z as Z-module is compressible.
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(2) "Aring R is compressible if and only if R is an integral domain™ [1].
Proof:

(=) Let a,b € R. Suppose that ab =0 if a# 0, and I = (a). ThenI is a
non-zero ideal of R and since R is compressible then there exists a
monomorphism f:R — I .Let f(1) = ra for some 0 #r € R. Then f(b) =
bf(1) = b(ra) = r(ab) = 0, therefore b =0. Hance R is an integral

domain.

(<) If Ris an integral domain. let | be a non-zero ideal of R. Then there exists
a non-zero element x in I. Define f:R =1 by f(r) =rx for all r € R.
Clearly f is a homomorphism and f is @ monomorphism since R is an integral

domain. Hence R is compressible.
(3) Z,,as a Z-module is not compressible module vne Z,,n > 1.

(4) Q as a Z-module is not compressible since Hom,(Q,Z) = 0.
(5) Every simple R-module is compressible.

(6) Every non-zero submodule (direct summand) of a compressible module is

also compressible.

(7)A  homomorphic image of a compressible module need not be

compressible. See examples (1) and (3).

(8) A direct sum of compressible modules need not be compressible in
general. For instance, Z is a compressible Z-module but Z&@Z is not

compressible Z-module.
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Proof:

Suppose that there exists f:Z@Z — Z&0 is a monomorphism. Then if
(a;,by),(aq,by) € Z®Z with by # b,, implies (aq, b;) # (aq,b,) but
f(aq, by) = f(ayq, b,) = (aq,0) which is a contradiction.

The following concepts are needed in the next section.

""Definition (1.1.3)[17]

A proper ideal | of a ring R is called a prime ideal if Va,b € R with
ab elthenaelorbel".

"Definition (1.1.4)[20]

An R-module M is called prime if ann, (M) = ann_(N) for each non-

zero submodule N of M.

"Definition (1.1.5)[15]

A proper submodule N of an R-module M is called prime whenever

meN for rer and xe ™, then either xe N or re[N: M ], where

‘R

[IN:;M]={reR:tM c N }."

"Definition (1.1.6)[27]

A submodule N of an R-module M is called essential if for every non-
zero submodule Kof M, Nn K # (0)."

"Definition (1.1.7)[27]

An R-module M is called uniform if m = 0 and every submodule of M is
essential in M."
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We recall in the following proposition, some properties of compressible

modules, from [35], which will be needed in our work.

"Proposition (1.1.8) [35, p.7, p.8]

(1) Every compressible module is prime.

(2) A finitely generated module M is compressible if and only if M is uniform

and prime module.
(3) Let M be an R-module. Then the following statements are equivalent:
(i) M is compressible.

(if) M is isomorphic to an R-module of the form A/P for some prime ideal P of

R and an ideal A of R containing P properly.

(iii) M is isomorphic to a non-zero submodule of a finitely generated uniform

prime R-module".

"Definition (1.1.9)[24]

A compressible module M is called critically compressible if M cannot be
embedded in any proper factor module M/N with N is a non-zero submodule

of M".

Examples and Remarks (1.1.10)

(1) The Z-module Z is critically compressible.
(2) Every simple module is critically compressible.
(3) Q as a Z-module is not critically compressible.

(4) According to [26] the compressible and critically compressible modules

are equivalent if R is a commutative ring.
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If R is any ring we recall some of the following results:

Proposition (1.1.11)

A non-zero submodule of a critically compressible module is also a

critically compressible.
Proof:

Let M be a critically compressible module and 0 # N < M. Then N is
compressible by Definition (1.1.9) and (Examples and Remarks (1.1.2.(6)).
Let 0 # H < N. Suppose that there exists a monomorphism, say a: N — N/

H, and let f:M —- N be a monomorphism. Hence the composition

MLNiN/H—ﬁM/H gives an embedding of M into M/H which is a

contradiction. Therefore N is critically compressible.

" Definition (1.1.12)[8]

A partial endomorphism of an R-module M is a homomorphism from a

submodule of M into M."

"Proposition (1.1.13)[26, proposition 1.1]

The following conditions are equivalent for a compressible module M
(1) Mis critically compressible.

(2) Every non-zero partial endomorphism of M is a monomorphism."
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1.2 Retractable Modules

We present in this section the concept of retractable modules with many

examples and we investigate some of its properties.

"Definition (1.2.1)[41]

An R-module M is called retractable if Hom(M,N) # 0 for each non-zero
submodule N of M."

"A ring R is called retractable if the R-module R is retractable.”

Examples and Remarks (1.2.2)

(1)Every commutative ring with identity is a retractable.
Proof:

Let R be a commutative ring with identity and let | be a non-zero ideal of R.
let 0 = a €1. Define f:R— 1 by f(r) =raVr € R. Clearly f is a well-
defined R-homomorphism. If f = 0,Then f(r) =0 for all r € R. So, 0 =
f(1) = 1.a = 0 which is a contradiction. Hence Hom(R,I) # 0.

(2) Z,, is a retractable Z-module for all positive integer n > 1.

(3) Every compressible module is retractable but not conversely, for instance

Z, as a Z-module is retractable but not compressible.

(4) Every integral domain is a retractable ring by (Examples and Remarks
1.1.2,(2)) and (3). However there is a retractable ring which is not an integral

domain. For example Z, is a retractable ring but is not an integral domain.
(5) Q as a Z-module is not retractable since Hom,(Q,Z) = 0.

(6) Every semisimple (simple) module is retractable.
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(7) If R is a semisimple ring, then every R-module is retractable.

(8) Let M be an R-module. Then M is a retractable R-module if and only if M

IS a retractable R /ann(M)-module.
Proof:

This follows from the fact that: N is an R-submodule of M if and only if N is
an R-submodule of M and Homg(M,N) = Homz(M,N), R = R/ann(M).

(9) "For any R-module M, R®&M is a retractable R-module."[39,p.71].In

particular the Z-module Z & Q is retractable.

(10) "For any proper ideal | of a ring R, the R-module R/I is retractable.”
[36,p.306]

(11) "Zp as a Z-module is not retractable"[39,p.71].

(12) "Direct sum of any family of retractable modules is retractable.”
[36,proposition1.4,p.307]. In particular "An arbitrary direct sum of copies of
M is retractable if and only if M is retractable.” [42,proposition2.10,p.686].

In the following proposition we show that retractability is preserved

under isomorphism.

Proposition (1.2.3)

Let M, and M, be two isomorphic R-modules. Then M,is retractable if

and only if M, is retractable.

Proof:

Assume that M, is retractable and let ¢ : M, - M, be an isomorphism. Let

0#N<M, Then0+# @ }(N)<M,.Put K=¢ I(N).Letf:M, > K be
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a non-zero homomorphism and let g- (/)‘K then g:K->M, is a
homomorphism and g(k) = ¢(¢~*(N)) = N,hence g:K >N is a
homomorphism. Now, we have the composition M, ﬂMl LKiN. Let
h=gfe~! then h € Hom(M, N).If h=0then 0= g(f ((p‘l(MZ)) =
g(f(M,))implies that f(M,) < Kerg € Kere = 0.Thus f(M, ) = 0, which
IS a contradiction. Therefore Homy (M,, N) # 0 which is what we wanted.

In order to give other applications of proposition (1.2.3) we need to recall:

"An R-module is called free if it has a basis.” [18].

Corollary (1.2.4)

If R is an integral domain, then every free R-module is retractable.
Proof:

Let M be a free R-module with basis {X;: 1 € A}. Then M =~ @;,, R; where
Ry=R vAeA by [18lemma 4.43p.89]. By (Examples and
Remarks1.2.2,(4)) R is retractable and hence @,coR; is retractable by
(Examples and Remarks1.2.2,(12)). Therefore M is retractable by proposition
(1.2.3).

"Remark (1.2.5)

A submodule of a retractable module is not necessary retractable in
general."[36,p.306].

Consider the following example, which is recalled in [36,p.306] without any

details, we explain it as follows:
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Example (1.2.6)

g IZ):a,b,ceR} where R Dbe a commutative ring with

identity. S is a ring with identity with respect to addition and multiplication

Let 5 ={(

of matrices. The non-zero ideals of S are:
I, =S1,= {(‘3 g):a,b €R},1; = {(g (C)):a,c € R}, =

{(g 8):aER} 0r15={(8 (C)):CER}.

In each of these cases one can easily define a non-zero homomorphism from

S to I, which means that S is a retractable S-module.

a b

Now, let I={(0 0

):a,beR}.we claim that I is not a retractable

submodule of S.

Note that I = ((1) 8)5 and ((1) 8) Is an idempotent element and hence I is

an idempotent ideal.

Let | = {(8 g) :b € R}. Jisasubideal of I and JI = 0. Suppose that there

is a homomorphism, say f:1 — J.

Then f(I) = f(I?) = f(I)I € JI = 0 and hence f(I) = 0, that means f =0

therefore Hom(I,]) = 0.Hence I is not retractable.

In the following proposition we prove that under certain condition, the

submodule of a retractable module is also retractable.

First," recall that a ring is called Boolean ring in case each of its element is an
idempotent" [17]
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Proposition (1.2.7)

Let M be an R-module such that End, (M) is a Boolean ring. If M is a

retractable R-module, then every non-zero submodule of M is also retractable.

Proof:

Let0#N <Mand0+# K <N.Then Hom,(M,K) # 0. Let f:M — K be a
non-zero homomorphism. Hence fi:N — K is a homomorphism where
i:N - M is the inclusion homomorphism. We claim that fi # 0, Suppose
that fi = 0, then (fi)(N) =0= f(N),so N € Kerf and hence K < Kerf,
which implies that f(M) € Kerf therefore f(f(M)) = 0. Let j:K - M be
the inclusion  homomorphism. Then jf € End,(M)and jf(M) =
fOD) but GH*(M) = GHGHM) = jf(fOD) = j(F(f(M)) = j(0) =

0,and (jf)?(M) = (jf)(M) since End, (M) is a Boolean ring.Hence
j(f(M)) = f(M) = 0. Therefore f = 0 which is a contradiction, thus fi # 0,

therefore N is retractable.

Now we recall a special case for a submodule of a retractable module is

also retractable.

Proposition (1.2.8)

If R is an integral domain, then every non-zero ideal of R is also

retractable.
Proof:

Let | be a non-zero ideal of R and let J be a non-zero subideal of I. Then J2 #

0 (since R is an integral domain). But J2 € JI. So JI # 0. Therefore there

10
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exists r € J such that I = 0 . Define f:1 -] by f(a) =ra for all a € I.

Cleary, f is an R-homomorphism and f # 0, hence | is retractable.

To give an application of proposition (1.2.8), we recall that:

"An R-module M is quasi-Dedekind if and only if every non-zero f € End,

(M) is a monomorphism." [11,theorem 1.5,p.26].
"An R-module M is called dualizable, if Homgz (M, R) # 0." [18].

Corollary (1.2.9)

Let M be a faithful quasi-Dedekind dualizable R-module. Then M is

retractable.
Proof:

M being faithful quasi-Dedekind dualizable gives R is an integral domain and
M is isomorphic to an ideal of R, [1l.corollary 1.8 and corollary 2.3].
Therefore M ~ [ for some ideal | of R. By proposition (1.2.8), | is retractable
and hence M is retractable by proposition (1.2.3).

Note (1.2.10)

The condition M is dualizable can not be dropped in corollary (1.2.9), for
example Q as a Z-module is faithful and quasi-Dedekind but not dualizable

and Q is not retractable.

Remark (1.2.11)

A direct summand of a retractable module need not be retractable in

general.

11
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a b

For instance, in example (1.2.6), if we take [ = {(O 0

):a,beR}andKz

{(8 (C))=C € R}, it is clear that S = I®K, I is not retractable while S is

retractable.

As another example: Z@Q is a retractable Z-module by (Examples and

Remarks1.2.2,(9)), however Q is not retractable Z-module.

Remark (1.2.12)

An epimorphic image (a quotient module) of a retractable module is not

necessary retractable in general. As it is shown in the following:

a b

In example (1.2.6), S is a retractable S-module and I = {(0 0

):a,bER}iS

not a retractable submodule of S. Define f:S - I by f (8 IZ) = (g g) for

all (g [Z) € S. It can be easily checked that f is an epimorphism. On the

8 (C)):CER} and S/Kerf =1 . HenceS/Kerf is

not retractable by proposition (1.2.3).

other hand Kerf = {(

As it was mentioned in (Examples and Remarksl1.2.2,(3)) that
compressible module is retractable and the converse need not be true in

general, we recall in the following some partial converse:

"Proposition (1.2.13)[45,proposition 1.2,p.3]

Suppose that M is a retractable R-module. If every non-zero f € End(M) is a
monomorphism, then every non-zero element of Homgz(M,N) is a
monomorphism, for any non-zero submodule N of M. In particular, M is

compressible.

12
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"Proposition (1.2.14)[21,proposition 1.2.10,p.33]

A retractable quasi-Dedekind module is compressible.”

Proposition (1.2.15)

If M is a retractable quasi-Dedekind R-module. Then M is isomorphic to
an R-module of the form A/P for some prime ideal P of R and an ideal A of R

containing P properly.
Proof:
By (1.2.14) M is compressible and by (1.1.8) the result follows.

"Proposition (1.2.16)[45,proposition 1.3,p.3]

Let M be a retractable R-module. Then the following statements are

equivalent:
(1) M is critically compressible.
(2)Every non-zero partial endomorphism of M is monomorphism."

"Definition (1.2.17)[27]

Let M be an R-module, put Z(M) = {m € M:anng(m) < R}, Z(M) is a
submodule of M it is called the singular submodule of M, M is called singular
if Z(M) = M and M is called nonsingular if Z(M) = 0."

"Proposition (1.2.18)[45,proposition 1.7,p.4]

A retractable nonsingular uniform module is critically compressible."

13
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1.3 Some Characterizations of Retractable Modules

We present in this section some characterizations of retractable modules.
Also we discuss some necessary or sufficient conditions for a module to be

retractable.

"Proposition (1.3.1)[42,p.685]

An R-module M is retractable if and only if there exists 0 # ¢ € End,

(M) such that Im ¢ < N for each non-zero submodule N of M."
Proof:

(=) Suppose that M is retractable. Let 0 # N < M. Then Homz(M,N) + 0.

Let f:M — N be a non-zero homomorphism.let ¢ = if where i:N - M be
the inclusion homomorphism, so ¢ € End, (M) and ¢ # 0 since f #0 and i

is a monomorphism. Clearly, Im ¢ = f(M) € N.

(<) To prove M is retractable. Let 0 = N < M. By hypothesis there exists a
non-zero homomorphism ¢: M — M and ¢ (M) S N. Therefore ¢: M - N is

a non-zero homomorphism, that is Homgz (M, N) # 0 hence M is retractable.
Now, we give the following characterization

Proposition (1.3.2)

An R-module M is retractable if and only if Hom,(M,Rx) = 0 for all

0#x€EM.
Proof:
(=) Suppose that M is retractable and let 0 # x € M. Put N = (x) = Rx

Then 0 # N < M and Homz(M, N) # 0. Hence Homyz(M, Rx) # 0.

14
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() To prove M is retractable. Let0O+ N <M and let 0+ x €N, by
hypothesis, Hom(M, Rx) # 0. Let f: M — Rx be a non-zero homomorphism.
Then if:M - N is a homomorphism where i:Rx — N is the inclusion
homomorphism, clearly if # 0 since f # 0 and i is a monomorphism. Hence

Homgz (M, N) # 0 this completes the proof.

"Let R be an integral domain and M be an R-module. Let T(M) = {m €
M:rm = 0 forsome 0 # r € R}.T(M) = M is a submodule of M, M is called
a torsion module if T(M) = M, and M is called torsion-free if T(M) =
0."[18]

Proposition (1.3.3)

If M is a torsion-free cyclic R-module, then M is retractable.
Proof:

Let M = Rx for some0+# x € M and M is torsion-free Let 0 #¥me M
Define f:M - Rm by f(rx) =rmforall r € R. If rx = 0 then r = 0 since
M is torsion free and hence rm = 0 , therefore f is well-defined. Clearly, f
Is @ homomorphism. If f =0 implies rm = 0, Vr € R, hence m = 0 which is
a contradiction so, f #= 0 and Hom(M,Rm) # 0, VO =#m € M. Thus M is
retractable by proposition (1.3.2).

In the following result, we show that in the class of torsion-free

modules, retractability is equivalent to dualization.

Proposition (1.3.4)

Let M be a torsion-free R-module. Then M is retractable if and only if M

is dualizable.

15



Chapter One Compressible and Retractable Modules

Proof:

(=) Suppose that M is retractable. Let 0 #+ x € M.Then by proposition
(1.3.2), Homgz(M,Rx) # 0. Let f: M — Rx be a non-zero homomorphism.
Define g: Rx = R by g(rx) = r for each r € R. It can easily checked that g
is a well-defined monomorphism and hence 0 # gf € Hom(M, R). Therefore

M is dualizable.

(<) Suppose that M is dualizable.Let 0 # f: M — R be a homomorphism.
Let 0 # x € M. Define g:R - Rx by g(r) = rx forall r € R, Clearly, g is a
well-defined homomorphism and since M is torsion-free, g is a
monomorphism, so, 0 # gf € Hom(M, Rx) hence by proposition (1.3.2), M

is retractable.

Remark (1.3.5)

The condition M is torsion-free in proposition (1.3.4), cannot be dropped.
For example Z, is a retractable Z-module but Z, is not dualizable, in fact Z, is

a torsion Z-module.

It is well-known that every faithful prime module is torsion-free [3], so

the following result is an immediate consequence of proposition (1.3.4).

Corollary (1.3.6)

Let M be a faithful prime R-module. Then M is retractable if and only if M

is dualizable.

In order to give other applications of proposition (1.3.4), we need to

recall the following:

"An R-module M is called torsionless, if M can be embedded in a direct

product of copies of R, equivalently, the natural homomorphism ¢: M - M~

16
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is a monomorphism, where ¢ is defined by (¢(m))(f) = f(m),vme€
M,Vf € M* = Hom(M, R)." [44].

"An R-module M is called projective if for any epimorphism f: A - B (A and
B are any two R-modules) and for any homomorphism g: M — B, there exists
a homomorphism h: M — A such that fh = g." [18]. That is the following

diagram is commutative.

=}

"Lemma (1.3.7)[44,p.144]

(1) A torsionless module is dualizable.
(2) Every free (projective) module is torsionless.
(3) If Ris an integral domain, then every torsionless R-module is torsion-free.

(4) If R is an integral domain and M is a finitely generated torsion-free

R-module, then M is torsionless."

According to this lemma the following are consequence of proposition
(1.3.4)

Corollary (1.3.8)

If R is an integral domain, then every torsionless R-module is retractable

and the converse is not true in general.

17
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Proof:

Let M be a torsionless R-module. Then M is dualizable and torsion-free (by
Lemma (1.3.7,(1) and (3)) and hence by proposition (1.3.4), M is retractable.

For the converse, Z,, as a Z-module is retractable but not torsionless.

Corollary (1.3.9)

If R is an integral domain and M is a finitely generated torsion-free

R-module, then M is retractable.
Proof:

M being finitely generated torsion-free gives M is torsionless (by lemma
(1.3.7,(4)) and by corollary(1.3.8) M is retractable.

Remark (1.3.10)

The condition M is finitely generated in corollary (1.3.9) is necessary, for

example Q as a Z-module is not retractable in fact Q is not finitely generated

Corollary (1.3.11)

If R is an integral domain and M is a free (projective) R-module, then M is

retractable and the converse is not true in general.
Proof:

M is torsionless by lemma (1.3.7,(2)) and M is retractable by corollary(1.3.8).

For the converse, the Z-module Z_ is neither free nor projective, but it is

retractable.

18
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In the following result we show that the class of finitely generated
uniform modules over an integral domain is contained properly in the class of

retractable modules.

Proposition (1.3.12)

Let R be an integral domain. Then every finitely generated uniform

R-module is retractable.

Proof:

Let M be a finitely generated uniform R-module. Then M = Rx, + Rx, +

-+ Rx_where x; €M Vi=12,....,nLet0#N < M.ThenN < Mand
hence for each i = 1,2, .....,n there exists t; ER, t; # 0 and 0# t; x; EN
[27]. Let t=t;ty.......t,. Then t+#0 and O#tx; € N for each
i=12,....,n.Now, for eachmeMm=3", rx;, withr,eR Vi=
1,2, ... .. ,nand tm =Y t (rix) = Y, ri(tx;), Hencetme N vme
M. Define f:M > Nby f(m)=tm VmeM, clearly f is a non-zero

homomorphism, hence Hom(M, N) # 0 and therefore M is retractable.
For the converse, Zg as a Z-module is retractable but not uniform.

Remark (1.3.13)

The condition M is finitely generated in proposition (1.3.12) cannot be
dropped, for example Q as a Z-module is uniform however it is not

retractable.

In order to give some consequences of proposition (1.3.12), we have to

recall the following:
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"An R-module M is called injective if for any monomorphism f:A - B
(A and B are any two R-modules) and for any homomorphism g: A - M,

there exists a homomorphism h: B — M such that hf = g ."[18].

"An injective hull of an R-module M denoted by E (M) is defined to be an

injective essential extension of M™ [27].
That is E(M) is an injective R-module and M < E(M).

"An R-module M is called quasi-injective if every homomorphism from
every submodule N of M to M can be extended to an endomorphism of M that

is the following diagram is commutative™ [19].

i

N '
M ‘......... ..- .

"A submodule N of an R-module M is called closed in M if N has no proper

M

essential extension in M, thatisif N < K < M implies K = N".[27]

"An R-module M is called indecomposable if 0 and M are the only direct
summands of M" [27].

Corollary (1.3.14)

Let R be an integral domain and M be a finitely generated R-module If

E (M) is indecomposable, then M is retractable.
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Proof:

Since E(M) is indecomposable, then according to [27,Exercises7,p.94] M is

uniform and hence the result follows from proposition (1.3.12).

Corollary (1.3.15)

Let R be an integral domain and M be a finitely generated R-module

which has only two closed submodules. Then M is retractable.
Proof:

Since M has exactly two closed submodules implies that M is uniform,

[27,Exercises8,p.94] and by proposition (1.3.12), we get M is retractable

Corollary (1.3.16)

Let R be an integral domain and M be a finitely generated indecomposable

quasi-injective R-module. Then M is retractable.
Proof:

M being indecomposable and quasi-injective implies that M is uniform,

[27,Exercises10,p.94] and according to proposition (1.3.12) M is retractable
For the next result the following concept is needed:

"An R-module M is called quasi-projective if for each epimorphism f: M — A
(A is any R-module) and for each homomorphism g: M — A , there exists a
homomorphism h: M — M such that fh = g." [19].

A necessary and sufficient condition for the quotient of a quasi-
projective module to be retractable was presented in [7, lemma 2.1,p.38]

without proof, we shall give its proof here.
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Proposition (1.3.17)

Let M be quasi- projective R-module and N be a submodule of M. Then

M /N is retractable if and only if for all submodules L of M containing N, the
set A, ={f € End,(M)|f(N)EN,f(M) S Land f(M) £ N} is non-

empty.
Proof:

(=) suppose that M/N is retractable. Let L<M and L2 N. Then
L/N <M/N and hence there exists a non-zero homomorphism, say
a:M/N - L/N. Let B =iamr where m:M —-> M/N is the natural
homomorphism and i:L/N — M/N is the inclusion homomorphism. Then

B:M — M /N is a homomorphism. Now consider the following diagram:
M

M Al > M/N

where the homomorphism f exists and make the diagram commutative

because M is quasi-projective by hypothesis. Therefore nf = .

We claim that fe€A,.f € Endg(M) and B(N) =ian(N) =ia(N) =
i(N) = N.On the other hand S(N) = nf(N) = f(N) + N. Therefore f(N) +
N = N and hence f(N) € N.

Next, we prove f(M) € L. Let x € f(M), then x = f(m) for some m €
M. B(m) =nf(m) =n(x) =x+ N = ian(m) =ia(m+ N) =

a(m+ N) € % Thus a(m+ N) =1+ N for some [ € L therefore x + N =
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l+ N gives x —l =n for some n € N. Hence x = f(m) =1l+n€L , so
f(M) c L.

Suppose that f(M) € N.then mf(M) =0=N and hence (M) =0 so
iar(M) =0 = a(M/N) implies that « =0 which is a contradiction.
Therefore f(M) € N.So, f € A, and hence A, is hon-empty.

(<) Assume that A; is non-empty. To prove M /N is retractable. Let L/N be a
non-zero submodule of M/N.Then L is a submodule of M containing N and
L # N. By hypothesis, there exists a homomorphism f: M — M such that
f(N)SN,f(M)< L and f(M) € N. Thus f:M — L is a homomorphism
and hence f induces a homomorphism f:M/N — L/N where f(m + N) =
f(m)+ N foreachm € M.f = 0, forif f=0,then f (M/N) =0 = N and
hence f(M) + N = N that is f(M) € N which is a contradiction. Therefore
0 # f € Homz(M/N,L/N). Hence M/N is retractable.

It is well-known that every projective module is quasi-projective, thus

the following is a consequence of proposition (1.3.17)

Corollary (1.3.18)

Let M be a projective R-module and N be a submodule of M. Then M/N is
retractable if and only if f € Endgz(M) such that f(N) € N, f(M) < L and
f (M) € N for any submodule L of M containing M.

For other consequences of proposition (1.3.17) we need to recall the

following:

"A submodule N of an R-module M is called invariant if f(N) € N for all
f € Endyg(M).M is called fully invariant if every submodule of M is

invariant™. [31]
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Corollary (1.3.19)

Let M be a quasi-projective (projective) R-module and N be invariant
submodule of M. Then M/N is retractable if and only if there exists
f € Endg(M) such that f(M) € L and f(M) € N for all submodule L of M

containing N.

Corollary (1.3.20)

Let M be a fully invariant quasi-projective (projective) R-module and N be
a submodule of M. Then M/N is retractable if and only if there exists f €
Endg(M) such that f(M) € L and f(M) € N for all submodule L of M

containing N.

Recall that "An R-module M is called multiplication if every submodule N of
M is of the form IM for some ideal | of R" [£0].

In the class of multiplication modules, there is a relation between the
retractabity of the module and that of the ring, namely, we give the following

result;

Proposition (1.3.21)

Let M be a faithful multiplication R-module. Then M is retractable.
Proof:

Let 0+ N < M. Then N = IM for some non-zero ideal | of R, and since R is
a retractable ring by (Examples and Remarks (1.2.2,(1)) implies that
Hom(R,I) # 0, let f: R — I be a non-zero homomorphism. Put f(1) = a for
some a € I. Then a # 0. Define g:M - Nby g(x) = ax for all x € M.
Clearly, g is a well-defined homomorphism. Moreover g # 0 since M is
faithful. Therefore Hom(M, N) # 0 and hence M is retractable.
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Remark (1.3.22)

The condition M is multiplication in Proposition (1.3.21) in necessary, for

instance, Q as a Z-module is not retractable and it is not multiplication.

Corollary (1.3.23)

Every every faithful cyclic R-module is retractable.
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Chapter Two

Small Compressible and Small Retractable Modules

Introduction

In this chapter we present a detailed study for the concepts small
compressible modules and small retractable modules. This chapter consists of
three sections. In section one we study small compressible modules by
investigating the basic properties of this type of modules. In the second
section we recall and study the basic properties of small retractable modules.
Next, in the third section we introduce some characterizations of small
retractable modules; moreover we give the relationships between these
modules and certain types of modules; also we give the concept of small epi-

retractable module with some of its basic properties.

2.1. Small Compressible Modules

The concepts of small compressible and small critically compressible
modules are introduced in this section and many of their basic properties are

studied, moreover we give some characterizations of these concepts.

"Definition (2.1.1)[18]

A proper submodule N of an R-module M is called small submodule
(N « M) if for any submodule K of M with N+ K = M impliesK = M.
Equivalently, N is a small submodule of M if for every proper submodule K of
M,N+ K+ M",
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Examples (2.1.2)

(1) (0) is a small submodule of every module.

(2) (0) is the only small submodule of the Z-module Z.

(3) Every finitely generated submodule of the Z-module Q is small in Q.
(4) (2) is a small submodule of the Z-module Z,.

(5) (3) is not a small submodule in the Z-module Z.

"Definition (2.1.3)[21]

An R-module M is called small compressible if M can be embedded in

each of its non-zero small submodule.

Equivalently, M is small compressible if there exists a monomorphism from

M into N whenever 0 # N < M".

A ring R is called small compressible if the R-module R is small

compressible. That is R can be embedded in any of its non-zero small ideal.

Examples and Remarks (2.1.4)

(1) Every compressible module is small compressible and the converse is not
true in general, for instance Z, as a Z-module is not compressible but Z, is

small compressible since (0) is the only small submodule of Z, .

(2) Let M be a small compressible module such that every submodule of M

contains a non-zero small submodule of M, then M is compressible.
Proof:

Let 0 # N < M. By hypothesis there exists a small submodule 0 # K «< N,
then K « M [22,proposition 1.1.3,p.11] since M is small compressible there
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exists f:M — K is a monomorphism, if:M — N is a monomorphism

where i: K — N be the inclusion homomorphism, then M is compressible.

(3) The Z-module Q is not small compressible since Z < Q@ and
Hom(Q,Z) = 0.

(4) Z, as a Z-module is not small compressible, since (2) « Z, but Z,

cannot be embedded in (2).

(5) If M is a hollow module (every proper submodule of M is small in M).

Then M is small compressible if and only if M is compressible.

(6) Every simple module is small compressible but not conversely, since Z as

a Z-module is small compressible but not simple.
(7) Each of the rings Z and Z, is a small compressible ring.

(8)A module M is small compressible if and only if M can be embedded in Rx

foreach 0 # x € M and Rx K M.
Proof:
(=) Is obvious according to the definition (2.1.3).

(e)Let 0##NKM and let 0=#x€N.Then Rx <« M[18Lemma
5.1.3,p.108]. By hypothesis there is a monomorphism say, f: M — Rx so, the

composition MLRxSN is a monomorphism with i:Rx - N is the

inclusion homomaorphism. Hence M is small compressible.

(9)A small compressible module M is compressible if every cyclic submodule

of M is small in M.
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Proof:

Let 0 #N <M and 0 # x € N. Then by hypothesis Rx << M so there is a

. .- f J .
monomorphism f: M — Rx and hence the composition ML5Rx SN is a

monomorphism which implies that M is compressible.

(10) Let M be a module in which every cyclic submodule of M is small in M.

Then M is compressible if and only if M is small compressible.

Proposition (2.1.5)

A small submodule of a small compressible module is also small

compressible.
Proof:

Let M be a small compressible module and 0 # N <K M. Let0 # K < N.
Then K « M[18,Lemma 5.1.3,p.108] . As M is small compressible implies
there exists a monomorphism, say f: M — K and therefore fi:N = K is a
monomorphism where i: N = M is the inclusion homomorphism. Hence N is

small compressible.

Proposition (2.1.6)

A direct summand of a small compressible module is also small

compressible.
Proof:

Let M = A®B be a small compressible module and let 0 # K «< A. Then
K @ 0 « M [22,propositionl.1.4,p.11] and hence there is a monomorphism
say, f:M = K @ 0 clearly K0 = K, so f: M — K is a monomorphism and
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the composition A Bulkisa monomorphism where j, is the injection of

A into M. Therefore A is small compressible.

Proposition (2.1.7)

Let M, and M,be two isomorphic modules. Then M, is small

compressible if and only if M, is small compressible.

Proof:

Assume that M; is small compressible and let ¢ : M, - M, be an
isomorphism. Let 0 # N < M,. Then 0 # ¢ 1(N) <« M, .Put K = ¢ 1(N).
Let f:M, - K be a monomorphism and let g:MK then g:K - M, is a

monomorphism and g(k) = (¢ '(N)) = N,hence g:K >N is a

-1

i .- f
monomorphism. Now, we have the composition M, <p—>M1 LKN. Let

h = gfe~1is a monomorphism. Therefore M, is small compressible.

Remark (2.1.8)

A homomorphic image of a small compressible module need not be small

compressible in general.

For example, Z as a Z-module is small compressible and Z/4Z ~ Z,is not

small compressible.

Proposition (2.1.9)

Let M = M;®M, be an R-module such that annM; + annM, = R. Then

M is small compressible if and only if M; and M, are small compressible.
Proof:

(=) Follows from propositon (2.1.6).
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(e)Let 0# N K M. Then by [31,proposition 4.2,p.28], N = K;®K, for
some 0 #K; <M; <Mand 0 # K, <M, <M. And as N K M, then K; <
M; and K, K M, by [22,proposition 1.1.4,p.11]. But M; and M, are small
compressible, so there are monomorphisms f: M; - K, and g: M, — K,.
Define h: M - N by h(a,b) = (f(a), g(b)). It can be easily checked that h

IS @ monomorphism and hence M is small compressible.

Corollary (2.1.10)

Let {M;}-,be a finite family of small compressible R-modules such that

,annM; = R. Then @], M; is also small compressible.

"Definition (2.1.11)[28]

An R-module M is called small prime if annM = annN for each non-zero

small submodule N of M".

"Definition (2.1.12)[28]

A proper submodule N of an R-module M is called small prime
submodule if and only if whenever reR and xeM with (X) <M and rxeN

implies either xeN or r € [N:M]".

Every prime module is small prime but not conversely, for example, Z; as a

Z-module is small prime but not prime, while Z, is not small prime Z-module.

"Definition (2.1.13)[21]

An R-module M is called small uniform if every non-zero small

submodule of M is essential in M".

Every uniform is small uniform but the converse need not be true in general,

for instance the Z-module Z is small uniform but not uniform.
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The following results where given in [21].

"Proposition (2.1.14) [21,lemma 2.3.3,p.56]

If M is small compressible, then M is S-prime and M is S-uniform”

"Proposition (2.1.15)]21,theorem?2.3.6,p.57]

Let M = Rm;®Rm,®... BRm;,, where m;,m, ...,m; € M.If M is small

uniform and small prime, then M is small compressible.

We introduce in the following theorem some characterizations of small

compressible modules.

Theorem (2.1.16)

Let M be an R-module. Then the following statements are equivalent:
(1) M is small compressible.

(2) M is isomorphic to an R-module of the form A/P for some small prime

ideal P of R and an ideal A of R containing P properly.

(3) M is isomorphic to a non-zero submodule of a finitely generated small

uniform, small prime R-module.
Proof:
1=(Q?)

Let 0 +# m € M and Rm « M. Then Rm is small compressible by proposition
(2.1.5). Therefore Rm is small prime submodule of M by proposition (2.1.14).
By (1), there is a monomorphism, say f: M — Rm and hence M is isomorphic
to a submodule of Rm. On the other hand, Rm =~ R/ann(m).Moreover M is
small compressible gives M is small prime by proposition (2.1.14),and

according to [28,proposition 3.11,p.5], ann(m) is a prime ideal and hence
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small prime ideal of R. Put ann(m) = p. Then M =~ A/P where A is an ideal

of R contains P properly and P is a small prime ideal of R.
(2)=03)

By (2),M ~ A/P for some small prime ideal P of R and an ideal A of R
containing P properly, so A/P is a non-zero submodule of R/P.By hypothesis
and according to [28,Examples and Remarkes 2.2,(2)], P is a prime ideal of R,
R/P is an integral domain and hence R/P is a small prime R-module
[28,Examples and Remarks 3.2, (6)], and R/P is a finitely generated uniform

and hence small uniform R-module, hence (3) follows.
(3) =(1)

By (3), M is isomorphic to a non-zero submodule of a finitely generated
small uniform and small prime R-module, say M, so M is small compressible
R-module by proposition (2.1.15). Hence M is also small compressible R-

module by proposition (2.1.7) which proves (1).

In the following theorem we give a necessary condition for a quotient

module to be small compressible.

Theorem (2.1.17)

Let N be a proper submodule of an R-module M. If M/N is small

compressible, then N is small prime submodule of M.
Proof:

Letr e R,x € M,(x) <K M and rx € N. Suppose that x € N. Then N & N +

N+(x)
N

N+(x L M
()+—=—, for some
N N N

(x). We claim that K % . Suppose that

N+(X)+L M o (D+L M
TN N N

submodule L of M containing N. Hence
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implies that (x) + L = M. But (x) < M by hypothesis, therefore L = M and

L M : N M :
S=N which means that +Ha) <<ﬁ Therefore there exists a

) M N+(x) ] M . .
monomorphism, say f:ﬁ_)T (since ~ s small compressible by

hypothesis).Now, we prove that rf (%) =N. Let y€ f(%).Then y =

N+(x) So y =

f(m+ N) for some m € M on the other hand f(m + N) € -

(n+tx)+N=tx+ N for some ne N and t € R.But ryErf(%) and

ry=rf(m+N)=r(tx+N)=t(rx)+ N=N (since rx € N).Thus

M+N
r and

rf(%) C N and hence rf (%) =N = f(r.%), then r% =N =

rM + N = NthatisrM € N. Hence r € [N: M] which proves that N is small

prime.

Theorem (2.1.18)

Let M be an R-module in which every cyclic submodule of M is small in M.
Let N be a small prime submodule of M such that [N: M] 2 [K: M] for each

submodule K of M containing N properly. Then M/N is small compressible.
Proof:

Assume that N is a small prime submodule of M. We have to show that M/N
is small compressible. Let 0 # L/N <« M/N. Then [N:M] 2 [L: M] (by
hypothesis) and hence there exists t € [L:M] and t & [N: M]. Define
fiM/N - L/N by f(m+N)=tm+ N for all me M. Clearly, f is a
homomorphism. To prove f is a monomorphism. Suppose that f(m,; + N) =
f(m, + N) with m,,m, € M. Then tm, — tm, = t(m; —m,) € N. But by
hypothesis (m; —m,) «< M and N is small prime submodule of M, moreover
t € [N: M], therefore m; — m, € N and hence m; + N = m, + N. Hence f is

a monomorphism which completes the proof.
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The following are some consequences of theorem (2.1.17) and (2.1.18)

Corollary (2.1.19)

Let M be a small prime R-module such that annM 2 [K: M] for all non-
zero submodule K of M and every cyclic submodule of M is small in M. Then

M is small compressible.
Proof:

Since M is small prime, then (0) is a small prime submodule of M [28] and
since annM = [0: M] 2 [K: M] by hypothesis therefore by the theorem

(2.1.18) we get M is small compressible.

Corollary (2.1.20)

Let M be an R-module such that annM 2 [K: M] for each submodule K of
M and every cyclic submodule of M is small in M. Then M is small prime if

and only if M is small compressible.

Corollary (2.1.21)

Let M be a multiplication R-module, N be a proper submodule of M and
every cyclic submodule of M is small in M. Then M/N is small compressible

is and only if N is small prime submodule of M.
Proof:

As M is a multiplication module, then [N: M] 2 [K: M]for all submodule K of
M containing N properly. So according to theorem (2.1.17) and (2.1.18) the

result follows.
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Corollary (2.1.22)

Let | be a proper ideal of a ring R such that every principal ideal of R is
small in R. Then R/l is small compressible if and only if | is a small prime
ideal of R.

"Proposition (2.1.23) [21.proposition (2.3.7).p 591

Let M be a faithful finitely generated multiplication R-module, then M is
small compressible if and only if for each (0) # I < R, annyI = (0)".

"Proposition (2.1.24)[21,proposition 2.3.9.p.60]

Let M be a faithful finitely generated multiplication R-module. Then M is

small compressible module if and only if R is small compressible ring".

"Definition (2.1.25)[Y1]

A small compressible module M is called small critically compressible if
M cannot be embedded in any proper quotient module M/N with 0 # N «
M".

Proposition (2.1.26)

A non-zero small submodule of a small critically compressible module is

also small critically compressible.
Proof:

Let M be a small critically compressible module and 0 # N <« M. Then by
proposition (2.1.5) N is small compressible. Let 0 # H < N. Then H K M
and N/H <K M/H [22,proposition 1.1.2,p.10]. Suppose that there exists a

monomorphism say a: N — N/H. But M is small compressible implies that

there is a monomorphism say f:M — N. Then the composition ML N
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5 N/H —l>M/H gives a monomorphism from M into M/H which is a

contradiction. Therefore N is small critically compressible.

Proposition (2.1.27)

A direct summand of a small critically compressible is small critically

compressible.
Proof:

Let M = A@B be a small critically compressible module. Then M is small
compressible and by proposition (2.1.6), A is also small compressible. Let
0# K < A. Then K ~ K®0 < M.Let f:M — K be a monomorphism, and

suppose that there is a monomorphism say, g:A— A /K. Then the

composition M - K Sa3a / K NI / K is a monomorphism (where i and
J are the inclusion homomorphisms). Therefore a contradiction. Hence A is

small critically compressible.
We introduce the following concept:

Definition (2.1.28)

A small partial endomorphism of a module M is a homomorphism from a

small submodule of M into M.

Examples (2.1.29)

(1) If 0#N KM (M is any R-module), then the inclusion homomorphism

i: N - M is a small partial endomorphism of M.
(2) Let N = (2) be the submodule of the Z-module Zg . Then N < M and

f:(2) - Zg defined by f(x) = 2x for all x € N. Then f is a small partial

endomorphism.
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"Definition (2.1.30)[31]

Let M be an R-module. A submodule N of M is said to be stable, if
f(N) € N for each R-homomorphism f: N - M."

"M is called fully stable in case each submodule of M is stable."”

Proposition (2.1.31)

Let M be a fully stable module. If M is small critically compressible
module. Then every non-zero small partial endomorphism of M is a

monomaorphism.
Proof:

Let 0 # N KM and f:N — M be a non-zero small partial endomorphism.
Then f(N) <N (since M is fully stable) and N <« M gives f(N) K M
[18,Lemma 5.1.3,p.108] on the other hand N/kerf = f(N), So there exists
an isomorphism say ¢:N/kerf — f(N).But M is small critically

compressible (by hypothesis) implies that there exists a monomorphism, say

o .
g:M = f(N),s0 the composition M > f(N) L N/kerf > M/kerf is a
monomorphism and kerf < N < M gives kerf «< M. Thus M is embedded
in M/kerf which is a contradiction then, kerf =0 , so f is a

monomaorphism.
The following proposition is a partial converse of proposition (2.1.31)

Proposition (2.1.32)

Let M be a small compressible module such that the quotient of every
submodule of M by a small submodule is small. If every small partial
endomorphism of M is a monomorphism, then M is small critically

compressible.
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Proof:

Suppose that M is not small critically compressible then there is a non-zero
small submodule N of M and a monomorphism f: M — M /N. Therefore M is
isomorphic to a submodule, say K/N of M/N with K is a submodule of M

containing N. By hypothesis K/N < M /N and since N < M implies K <« M

-1
[Y2, proposition 1.1.2, p.10]. Hence the composition K 5 K/N N (where
@:M — K/N is an isomorphism) is a monomorphism (by hypothesis) and
hence 0 = ker( ¢ ! m) = kerm = N which is a contradiction, therefore M is

small critically compressible.

2.2 Small Retractable Modules

In this section we study the concept of small retractable modules in

some details.

"Definition (2.2.1)[21]

An R-module M is called small retractable if Homgz (M, N) # 0 for each non-

zero small submodule N of M".

A ring R is called small retractable if the R-module R is small retractable.

That is Homg (R, I) # 0 for each non-zero small ideal | of R.

Examples and Remarks (2.2.2)

(1) Every retractable module is small retractable and the converse is not
always hold. Consider the following example:

a b
0 0

on the other hand the only small submodule of | is the zero submodule, hence

In example (1.2.6), we show that I = {( ) a,b € R} IS not retractable,

I is small retractable.
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(2) If M is a hollow module, then M is retractable if and only if M is small

retractable.
(3) The Z-module Q is not small retractable since Z « Q but Homgz (Q, Z)=0.
(4) Every integral domain is a small retractable ring but not conversely, for

instance Z, as a Zg-module is small retractable but Zgis not an integral

domain.

(5) Every semisimple module is small retractable, however the converse is not
true in general, for example Z is small retractable Z-module but it is not

semisimple.
(6) Every module over a semisimple ring is small retractable.

(7) Every small compressible module is small retractable and the converse is
not true in general, for example the Z-module, Z,, is small retractable but not
small compressible since {0,12} is the only small submodule in Z,, and
f:Z,4 = {0,12} such that f(x) = 12x for all X € Z,, is a homomorphism

which is not monomorphism.

(8) Let M be an R-module. Then M is a small retractable R-module if and only

if M is a small retractable R /annM-module.

Proposition (2.2.3)

Let M be an R-module such that Endg (M) is a Boolean ring. If M is small
retractable, then every non-zero small submodule of M is also small

retractable.
Proof:

As in the proof of proposition (1.2.7).
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Proposition (2.2.4)

Let M, and M, be two isomorphic R-modules. Then M; is small

retractable if and only if M, is small retractable.
Proof:
As in the proof of proposition (1.2.3).

Remark (2.2.5)

A direct summand (and a homomorphic image, or a quotient module) of a

small retractable module may not be small retractable in general.

For example, the Z-module Z&®Z,~ is small retractable, however Z, is not
small retractable, M /Z =~ Z, is not small retractable and Z, is a hollow Z-

module.

In the following proposition we investigate the direct sum of small retractable

modules.

Proposition (2.2.6)

If M; and M, are small retractable modules such that annM; +annM, =

R then M, @®M, is also small retractable.
Proof:

Let 0# K K M;®&M,. As annM,; + annM, =R Dby [31,proposition
4.2,p.28] gives K = N; @ N, with N; < M; and N, < M,.But N; @ N, <
M;®M, implies N; < M; and N, < M, [22,proposition 1.1.4,p.11].Therefore
Hom(M,,N,) # 0 and Hom(M,,N,) # 0. Let 0+ f:M; - N; and 0 #
g: M3, - N,.Define h: M;@M, — Ny @ N, by h(my, m;) = (f(my), g(m;))

clearly h is a homomorphism. If h = 0, then h(m;,m,) = 0 for all m; €
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Ml’ my € M2,SO f(ml) =0 and g(mz) =0 fOF a.” mq € Ml’ m, € Mz,
which is a contradiction since f+0 and g+ 0. Therefore
Hom(M,®M,,K) # 0.

In the following proposition we give a sufficient condition for a

small retractable module to be retractable.

Proposition (2.2.7)

Let M be a small retractable module. If every non-zero submodule of M

contains a non-zero small submodule then M is retractable.
Proof:

Let 0 # N < M. By hypothesis N contains a non-zero small submodule. Let
0 # K < N. Then K « M [22,proposition 1.1.3,p.11]. Hence Hom(M, K) #
0 (since M is small retractable), and therefore Hom(M,N) #= 0 so M is

retractable.

As it was mentioned in Examples and Remarks(2.2.2,7) that every small
compressible module is small retractable and the converse need not be true in
general, we recall in the following results that the converse holds under

certain conditions:

Proposition (2.2.8)

If M is a small retractable quasi-Dedekind R-module , then every non-
zero element of Hom(M, N) is a monomorphism for any non-zero small
submodule N of M.

Proof:

Let 0 # N <« M and let f: M — N be a non-zero homomorphism. Then if €
End(M) and if # 0. For if if =0, then if (M) = f(M) = 0 implies f =0
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which is a contradiction. Hence 0 # if € End(M) and by hypothesis if is a

monomorphism which gives that f is a monomorphism.

"Corollary (2.2.9)[21.proposition 2.3.21.p.65]

Let M be a small retractable module. If M is quasi-Dedekind, then M is

small compressible™.

Corollary (2.2.10)

Let M be a finitely generated quasi-Dedekind R-module,then M is small

retractable if and only if M is small prime and small uniform.
Proof:

From corollary (2.2.9), M is small compressible and according to
proposition (2.1.14) and (2.1.15), the result follows.

"Definition (2.2.11)

A module M is called monoform if for each non-zero submodule N of M,
every non-zero f € Hom(N, M) is a monomorphism" [25]. And "M is called
S-monoform if for each non-zero small submodule N of M every non-zero

f € Hom(N, M) is a monomorphism"[21].

Corollary (2.2.12)

Let M be a small retractable quasi-Dedekind module. Then M is
S-monoform if and only if each non-zero small submodule of M is quasi-
Dedekind.

Proof:

By corollary (2.2.9), M is small compressible and by [Y1,corollary
2.3.20,p.65], M is S-monoform.
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2.3 Some Characterizations of Small Retractable Modules
We shall introduce some characterizations of small retractable modules

Proposition (2.3.1)

An R-module M is called small retractable if and only if there exists 0 #
f € End (M) such that Im f < N for each non-zero small submodule N of

M.

Proof:

(=) Suppose that M is small retractable. Let 0 +# N < M. Then Hom,
(M,N) # 0. Let g: M — N be a non-zero homomorphism and f = ig where
i: N = M be the inclusion homomorphism, then f € End, (M) and f = 0

since g #0 and i is a monomorphism. Clearly, f(N) = g(N) € N.

() Let 0 # N < M. By hypothesis, there exists a non-zero endomorphism
f:M — Mand f(M) € N. Therefore f: M = N is a non-zero homomorphism

this completes the proof.
The following is another characterization of small retractable modules

Proposition (2.3.2)

An R-module M is small retractable if and only if for each 0 = x e M

with x K M , Hom (M, Rx) # 0.

Proof:

(=) Is obvious.

44



Chapter Two Small Compressible and Small Retractable Modules

(<) To prove M is small retractable. Let0 # N < M and let 0 # x € N, then
Rx & N, so by hypothesis, Hom(M,Rx) # 0 which implies that
Hom(M, N) # 0 and therefore M is small retractable.

Proposition (2.3.3)

Let M be a fully invariant R-module such that f (M) is a direct summand

of M for each f € End, (M). Then M is small retractable if and only if there

exists 0 # f € End, (M) such that f (M) is small retractable.

Proof:

(=) Let i, be the identity endomorphism of M then i, (M) = M is small

retractable.

(<) To prove M is small retractable. Let 0 # N <« M. By hypothesis there is
a non-zero endomorphism f: M — M and f(M) is small retractable. Since
N & M, then f(N) « M [22,proposition 1.1.3,p.11], but f(N) < f(M) <M
and f(M) is a direct summand of M (by hypothesis) implies that f(N) <
f (M) [22,corollary 1.1.5,p.12] . As f(M) is small retractable, so there is a
non-zero homomorphism g: f(M) = f(N). But f(N) S N since N is

invariant therefore the composition Mif(M) if(N) —i>N gives igf €
Hom(M,N) and igf #0, for if igf =0, then 0 =igf(M) = gf(M)

implies g = 0 which is a contradiction. Therefore M is small retractable.

"Definition (2.3.4)[9]

An R-module M is called small projective if for each small epimorphism
f:A — B(where A and B are any two R-modules) and for any homomorphism
g: M — B there exists a homomorphism h: M — A such that fh = g. That is

the following diagram is commutative.
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.,Z

»
W e—-
«Q

» 0 (with kerf «< A)

where an epimorphism f: A — B is called small epimorphism provided that
kerf « A" [18].

"Definition (2.3.5)[10]

Aring R is called V-ring if every simple R-module is injective".

Remark (2.3.6)

If R is a commutative ring, then R is V-ring if and only if R is a Von-

Neumann regular ring" [44,corollary 3.73,p.97].

In the following proposition we show that over a V-ring the class of small

projective modules is contained in the class of small retractable modules.

Proposition (2.3.7)

If R is a V-ring (or a von-Neumann regular ring), then every small

projective R-module is small retractable.
Proof:

Let M be a small projective R-module. Let 0 #= x € M such that Rx < M. We
have to show that Hom(M, Rx) # 0. Let A be a maximal submodule of Rx.
Then Rx/A is a simple R-module and hence Rx/A is injective R-module (since
Ris a V-ring).
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Consider the following diagram:

0 » Rx

<

Rx /A

Since Rx/A is injective implies that there exists f: M — Rx/A such that fi =
m . Note that kerf =A< Rx KM, s0 kerf K M and M being small
projective implies that there exists a homomorphism h: M — Rx which makes

the following diagram commutative

v
Rx £ » RX /A
T

v
o

Thatis th = f. We get h € Hom(M, Rx).It is left to show that h = 0. If h =
0, then h(M) =0 and A = w(0) = f(M). On the other hand fi = m gives
fi(Rx) =m(Rx) = Rx + A. Thus f(Rx) = Rx + A € A. Therefore Rx € A
implies A = Rx which is a contradiction since A is a maximal submodule of

Rx, and hence h # 0 which proves that M is small retractable.

"Definition (2.3.8)[9]

A ring R is called cosemisimple if Rad(M) = 0, for each R-module M.

where Rad (M) = the sum of all small submodules of M".
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Proposition (2.3.9)[6.proposition 2.1.4,p.23]

A ring R is cosemisimple if and only if every R-module is small

projective".
The following result follows directly from propositions (2.3.7) and (2.3.9)

Corollary (2.3.10)

If R is a cosemisimple V-ring, then every R-module is small retractable.

A relation between small uniform module and small retractable module is

discussed under, certain conditions in the following proposition:

Proposition (2.3.11)

Let R be an integral domain. Then every faithful finitely generated small

uniform R-module is small retractable

Proof:

Let M be a finitely generated small uniform R-module. Then M = Rx, + Rx,

+ -+ Rx_ where x, M Vi=12,....,n.Let0 # N KM.ThenN < M

and hence for each i = 1,2, .....,n there exists t; ER, t; # 0 and O£ t; x; €
N [27]. Let t = tyty......t,. Then t #0 and 0+ tx; € N for all i =
1,2,....,nand foreachm e M, m = z rrx, With;, €R Vi=12,.... , M.

i=1
n

and tm=i t (r,x,) =Y r (tx,) and hence tm € N, vm € M. So we

can define f:M - Nby f(m)=tm Vme€ M. Clearly f is anon-zero
homomorphism, hence Hom(M,N) # 0, for if f =0, then tm = 0 for all
m € M implies t = 0 (since M is faithful), but ¢ # 0 therefore a contradiction.

Hence M is retractable.
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A sufficient condition for a faithful finitely generated multiplication R-
module to be small retractable is that R is a small retractable ring, as it is

shown in the following proposition

Proposition (2.3.12)

Let M be a faithful finitely generated multiplication R-module. Then M

is small retractable.
Proof:

Let 0 # N K M. Then N = IM for some non-zero ideal | of R (since M is
multiplication R-module). But N < M and M is a faithful finitely generated
multiplication R-module implies that I < R [22, propositionl.1.8, p.14]
therefore Hom(R,I) # 0 since R is small retractable by (Examples and
Remarks (1.2.2,(1)). Let f: R — I be a non-zero homomorphism. Put f(1) =
a for some a € I and a # 0. Define g:M — N by g(m) = am for all m €
M . It can be easily checked that g is a well-defined homomorphism, if g = 0,
then am = 0 for all m € M and therefore a € ann(M), hence a = 0 (since M
is faithful) but a # 0, therefore a contradiction and hence Hom(M, N) # 0.

Therefore M is small retractable.

Remark (2.3.13)

The ring Z is small retractable but the Z-module Q is not small
retractable, in fact Q is not finitely generated multiplication Z-module. This
means that these two conditions cannot be dropped in the proposition
(2.3.12).

Corollary (2.3.14)

Every faithful cyclic R-module is also small retractable.
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Proof:

By (1.3.23), every faithful cyclic R-module is retractable and hence is small

retractable.
The concept epi-retractable module was given in [5] as follows:

"Definition (2.3.15)

A module M is called epi-retractable if every submodule of M is a

homomorphism image of M".

Example: Every semisimple module is epi-retractable but not conversely, Z as

a Z-module is epi-retractable but not semisimple.
It is clear that an epi-retractable module is retractable
Now, we give the following proposition:

Proposition (2.3.16)

If M is an epi-retractable module, then every non-zero submodule of M is

also an epi-retractable.
Proof:

Let0 # N <M and 0 # K < N. As M is an epi-retractable, then there exists
epimorphisms f:M - N and g:M — K. Define h:N - K such that
h(f(x)) = g(x) for all x € N, h is well-defined, for if x; = x, in N, then
g(x1) = g(x3), thus h(f (x1)) = h(f (x2)).h is a homomorphism since g is a
homomorphism and h # 0 since g # 0. Therefore N is retractable, Moreover

h is an epimorphism since g is an epimorphism.
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Now, we present the concept of small epi-retractable module as in the

following definition:

Definition (2.3.17)

A module M is called small epi-retractable if every small submodule of
M is a homomorphic image of M. That is, whenever N is a small submodule

of M, then there exists an epimorphism from M onto N.

Examples and Remarkes (2.3.18)

(1) Every small epi-retractable module is small retractable.

(2) Z, as a Z-module is a small epi-retractable. Since (2) K Z,.f: Z, — (2) is

such that f(x) = 2x is an epimorphism.

(3) Z as a Z-module is a small epi-retractable since Z has no non-zero small

submodules.

(4) Every semisimple R-module is a small epi-retractable and not conversely
by (2).

(5) Z,~as a Z-module is not small epi-retractable.

(6) If M is a hollow module then M is small epi-retractable if and only if M

IS epi-retractable.

Proposition (2.3.19)

A non-zero small submodule of small epi-retractable module is also

small epi-retractable.
Proof:

Let M be a small epi-retractable module and 0 +# N < M. Let0 # K < N.
Then K « M[18,Lemma 5.1.3,p.108] Therefore there are epimorphisms
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fiM > N and g:M — K. Define h: N = f(M) » K = g(M) by h(f(m)) =
g(@m) for all m € M. Clearly h € Hom(N,K) and h # 0, for if h = 0. Then
h(f(M)) =0 = g(M) = K which is a contradiction. Moreover h is an
epimorphism, since h(N) = h(f(M)) = g(M) = K. Thus N is small epi-

retractable.

Corollary (2.3.20)

A direct summand of small epi-retractable is also small epi-retractable.

Proposition (2.3.21)

Let M be a small epi-retractable module and N be a small submodule of

M. Then M/N is small epi-retractable.
Proof:

Let 0 = K/N <« M/N, where K is a proper submodule of M containing N
properly. Since N is small in M and K/N is small in M/N implies that K is
small in M [22,proposition (1.1.2),p.10]. Hence there is an epimorphism, say
f:M — K (since M is small epi-retractable by hypothesis). f induces a
homomorphism f:M/N — K/N with f(m+ N) = f(m)+ N for all m €
M.f # 0for if f =0, then 0 = f(M/N)= f(M) + N = K + N (since f is an
epimorphism). Hence K + N = N implies K = N which is a contradiction.
Therefore Hom(M/N,K/N)= 0. Moreover f(M/N) = K/N. Thus M/N is

small epi-retractable.

Proposition (2.3.22)

Let M;and M,be two small epi-retractable modules such that annM; +

annM, = R. Then M; @M, is also small epi-retractable.
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Proof:

Let 0 #N&K M;@®M,. Then by [31,proposition 4.2,p.28],N = N;@®N, for
some 0 #N; < M; and 0 # N, < M,. And as N < M, then N; <« M; and
N, & M, by [22,proposition 1.1.4,p.11].Therefore there are epimorphisms
f:M; - N, and g: M, - N,.Define h:M;®M, - N by h(m;,m,) =
(f(my),g(m,)) for all (m;,m,) € M;®M,. Clearly, h is a non-zero
homomorphism and h is an epimorphism. Therefore M;®M, is small epi-

retractable.

Corollary (2.3.23)

Let {M;}~,be a finite family of small epi-retractable modules such that

,annM; = R. Then @], M; is also small epi-retractable.
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Chapter Three

Purely Compressible Modules and Purely
Retractable Modules

Introduction

We present in this chapter another generalization of compressible
modules and retractable modules namely, purely compressible modules and
purely retractable modules. A detailed study is given about these concepts.
The chapter includes four sections. Section one is devoted for purely
compressible modules, where we present the definition with many examples
and remarks, moreover many interesting properties of such modules are
investigated. In the second section, we introduce and study a special type of
purely compressible modules, namely purely critically compressible modules.
In section three, we present the concept of purely retractable modules with
many examples and properties of such modules. Some characterizations of
purely retractable modules are given in the last section of this chapter; also we
give the concept of purely epi-retractable module with some of its basic

properties.
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3.1 Purely Compressible Modules

We present in this section the concept of purely compressible module
and study its basic properties; also the relation between this concept and

certain types of modules is studied.

In the beginning we need to recall some concepts and some results which are

related to the subject of this section.

"Definition (3.1.1)[14]

A submodule N of an R-module M is called pure if NnIM = IN for

each ideal | of R™.

Examples (3.1.2)

(1) (0) and M are pure submodules of any module M.

(2) "Every non-zero cyclic submodule of the Z-module Q is not pure"
[Y2,Example 1.2.6,p.17].

(3) {0, 2} is not a pure submodule of the Z-module Z,.
(4) Each of {0, 3} and {0, 2,4} is a pure submodule of the Z-module Z.

"Definition (3.1.3)[16]

An R-module M is called pure simple if (0) and M are only pure

submodules of M".

Every simple module is purely simple, but not conversely, for example,

Z, is purely simple but not simple module.

Example (3.1.4)

(1) Each of Z and Z, as a Z-module is pure simple.
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(2) Every integral domain is pure simple but not conversely.
We recall some properties of pure submodules in the following remark:

"Remark (3.1.5)[¥2,Remarks 1.2.8,p.19]

Let N and K be submodules of an R-module M. Then
(1) If N is a direct summand of M, then N is pure in M.
(2) If N is pure in M and K is pure in N, then K is pure in M.
(3) IfNispurein Mand K < N, then N/K is pure in M/K,

(4) If K < N < M such that K is pure in M and N/K is pure in M/K, then N is

pure in M.
B)IfK NN ispureinK, thenNispurein N + K.
(6) If N+ K ispureinMand N N K is pure in K, then N is pure in M.”

"Definition (3.1.6)[23]

A ring R is called regular ring (in the sense of VVon-Neumann) if for

every r € R there exists t € R such that r = rtr".

"Definition (3.1.7)[¢7]

An R-module M is called regular module if for every m € M and for all

r € R, there exists t € R such that rm = rtrm".

"Proposition (3.1.8)[47]

(1) Every module over a regular ring is regular.

(2) An R-module M is regular if and only if every submodule of M is pure".
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Now, we introduce a new generalization of compressible modules,

namely purely compressible module as in the following definition:

Definition (3.1.9)

An R-module M is called purely compressible if M can be embedded in
each of its non-zero pure submodule. That is M is purely compressible if there
exists a monomorphism f: M — N whenever N is a non-zero pure submodule
of M.

A ring R is called purely compressible if R as an R-module is purely

compressible.

Examples and Remarks (3.1.10)

(1) Every compressible module is purely compressible, however there are

purely compressible modules which are not compressible.

For example, Z, as a Z-module is purely compressible, but Z, is not

compressible.

(2) Every purely simple module is purely compressible and the converse need

not be true in general.

(3) If R is an integral domain, then R is a purely compressible R-module but

not conversely.

(4) If M is a regular module, then M is compressible if and only if M is purely

compressible.

(5) If Ris a regular ring and M is an R-module, then M is compressible if and

only if M is purely compressible.

Now, we need to recall and prove the following lemma:
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Proposition (3.1.11)

Let M, and M, be two isomorphic modules. Then M; is purely

compressible if and only if M, is purely compressible.
Proof:

Suppose that M;is purely compressible and ¢: M; - M,be an isomorphism.
Let N be a non-zero pure submodule of M,. Let K = ¢ 1(N), then K is a

submodule of M;. We claim that K is pure in M;. Let | be an ideal of R.

But f is a monomorphism gives @(UM;NK) =@M, Ne(K)=
lo(M)Npe Y (N) =IM,NN = IN = Ip(K) = ¢(IK). But ¢ is an
isomorphism, then IM; N K = IK. Hence K is pure in M;. Let f: M, - K be
a monomorphism and let g- ¢\K then g: K — M, is a monomorphism and
g(K) = (¢~1(N)) = N, hence g:K - N is a monomorphism. Now, we
have the composition M, (p—_1>Ml J, K3N. Leth= gfe~lis a

monomorphism . Therefore M, is purely compressible.

Proposition (3.1.12)

A non-zero pure submodule of a purely compressible module is purely

compressible.
Proof:

Let M be a purely compressible module and N be a non-zero pure submodule
of M. Let K be a pure submodule of N. Then K is pure in M (by Remark
(3.1.5),(2)). Therefore there is a monomorphism say f: M — K and hence
if:K - N is also a monomorphism where i:K — N is the inclusion

homomorphism. Thus N is purely compressible.
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Corollary (3.1.13)

Every direct summand of a purely compressible module is a purely

compressible.

Corollary (3.1.14)

Let M be a regular module. If M is purely compressible, then every non-

zero submodule of M is purely compressible.

Corollary (3.1.15)

Let R be a regular ring and M be a purely compressible R-module. Then

every non-zero submodule of M is purely compressible.

Remark (3.1.16)

A homomorphic image (or a quotient) of purely compressible module
need not be purely compressible in general. For example, Z as a Z-module is

purely compressible but Z/6Z = Z is not a purely compressible Z-module.

Also this example shows the conditions R is a regular ring in corollary
(3.1.15), cannot be discarded.

Remark (3.1.17)

The direct sum of purely compressible modules is not necessarily purely

compressible. Consider the following example.

Example (3.1.18)

Let M =272,8Z,as a Z-module. Each of Z, and Z,is purely
compressible Z-module. But M is not purely compressible as it is shown

below:

M= {(0,0), (0,1), (1,0),(1,1),(2,0),(2,1),(3,0), 3, D},

59



Chapter Three Purely Compressible Modules and Purely Retractable Modules

A= Z(1,1) ={(0,0),(1,1),(2,0),(3,1)},and B=Z2(2,1) = {(0,0), (2, 1)}.

Clearly, M = A®B and hence each of A and B is a pure submodule of M, but
each of A and B does not contain a copy of M, that is M cannot be embedded

in A (or in B). Therefore M is not purely compressible.
Now, we introduce the following concepts:

"Definition (3.1.19)[43]

An R-module M is called purely prime if ann(M) = ann(N) for each

non-zero pure submodule N of M. "

Clearly, every prime module is purely prime; but not conversely. For instance,
the Z-module Z, is purely prime but not prime. While Z, as a Z-module is not

purely prime (in fact it is not prime).

Definition (3.1.2+)

A submodule N of a module M is called purely prime submodule if
whenever rx € N with r € R,x € M and (x) is pure in M implies either x €
Norr € [N: M].

Example (3.1.2Y)

Let M = Z, as a Z-module and N = (2). N is pure in Zg and N is purely

prime submodule of M.

Lemma (3.1.2Y)

An R-module M is purely prime if and only if (0) is a purely prime
submodule of M.
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Proof:

(=) Suppose that rx = 0 with r € R,x € M and (x) is pure in M. Assume
that x # 0. Since M is purely prime (by hypothesis) implies that annM =
ann(x) and hence r € annM = [0: M] hence (0) is a purely prime

submodule of M.

(&) Suppose that (0) is a purely prime submodule of M, let N be a non-zero
pure submodule of M and let r € annN. Then rx = 0 for all x € N, and
hence rx € (0). Assume that x # 0, then r € [0: M] = annM, therefore

annN € annM, so annM = annN, thus M is purely prime.

Lemma (3.1.23)

Let M be a module in which every submodule of a pure submodule is
also pure. If M is purely prime module, then annN is a prime ideal of R for

each non-zero pure submodule N of M.
Proof:

Let N be a non-zero pure submodule of M. let a,b € R and ab € annN.
Then abN = 0. Suppose that bN # 0. But bN < N and N is pure in M. By
hypothesis bN is pure in M, but M is purely prime and a € annbN implies
a € annM,on the other hand annM = annN,s0 a € annN and hence annN

is a prime ideal of R.
The converse of Lemma (3.1.23) is not true in general

For example: Z is not purely prime Z-module, however ann,(2) = 3Z and
ann,(3) = 2Z which are both prime ideals in Z and that (2), (3) are pure

submodule of Z;.
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Proposition (3.1.24)

Every purely compressible module is purely prime.
Proof:

Let M be a purely compressible module. Let N be a non-zero pure submodule
of M. We have to show that annM = annN. Let r € annN. Then rN = 0.
Let f: M - N be a monomorphism, then f(rM) =rf(M) < rN = 0 implies

that rM = 0, thus r € annM and therefore annM = annN.

"Definition (3.1.25)[4]

A module M is said to have the pure sum property (PSP) if the sum of

any two pure submodules of M is pure in M".

Proposition (3.1.26)

Let M be a module having PSP and N be a proper submodule of an R-
module M. If M/N is purely compressible, then N is purely prime submodule
of M.

Proof:

Letrx € N withr € R,x € M and (x) is pure in M. suppose that x ¢ N. We
have to show that r € [N: M]. x € N implies N < N + (x). Since M has PSP

by hypothesis, then N + (x) is a pure submodule of M and hence N+T(x) IS a

pure submodule of % by (Remark 3.1.5,(3)). But% is purely compressible (by

hypothesis), therefore there exists a monomorphism, say f:% - N+T(x) We

can prove rf (%) = N as in the proof of (2.1.17). But f is a monomorphism,

implies that % = N, thus rM < N and therefore r € [N: M] hence N is purely
prime submodule of M.
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We note that the converse of proposition (3.1.26) hold in case every cyclic

submodule of M is pure in M as we shall show in the following result.

Proposition (3.1.27)

Let M be a module such that every cyclic submodule of M is pure in M.
If N is a proper purely prime submodule of M such that [N: M] 2 [K: M] for
all submodules K of M containing N properly. Then M/N is purely

compressible.
Proof:

Let L/N be a pure submodule of M/N with L is a submodule of M containing
N properly. By hypothesis [N: M] 2 [L: M], so there exists t € [L: M] and t &
[N: M]. Define f:M/N — L/N such that f(m+ N)=tm+ N for all m €
M. Clearly f is a homomorphism. To prove f is a monomorphism. Let m +
N € kerf.Then f(m+ N)=N,sotm+ N =N impliestm € N. As N is
purely prime submodule of M and (m) is pure in M, moreover t & [N: M],
therefore m € N(by definition (3.1.20), so kerf = N and hence f is a

monomorphism, whence M/N is purely compressible.

In order to give some applications of proposition (3.1.26), the following

lemmas are needed

"Lemma (3.1.28)[33,proposition 2.4.5,p.58]

Every multiplication module has PSP".

"LLemma (3.1.29)[33,theorem 2.4.6,p.58]

A ring R is regular if and only if every R-module has PSP",
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Corollary (3.1.30)

Let M be a multiplication module and N be a proper pure submodule of

M If M/N is purely compressible, then N is purely prime submodule of M.
Proof:

M being a multiplication module implies that [N: M] # [K: M] for any two
distinct submodules N and K of M, moreover M has PSP by lemma (3.1.28).
Hence the result follows by proposition (3.1.26).

Corollary (3.1.31)

Let M be a cyclic module and N is a proper pure submodule of M. If M/N

Is purely compressible, then N is purely prime submodule.
Proof:

As M is a cyclic module gives M is a multiplication module, and according to

corollary (3.1.30), we get the result.

Corollary (3.1.32)

Let R be a regular ring and N is a proper submodule of M . If M/N is

purely compressible, then N is purely prime submodule.
Proof:

By proposition (3.1.8), M is a regular module and N is a pure submodule of
M. And by lemma (3.1.29), M has PSP. Hence N is purely prime submodule
by proposition (3.1.26).
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Corollary (3.1.33)

Let M be an R-module such that annM 2 [K: M] for each non-zero
submodule K of M. Then M is purely compressible if and only if (0) is a

purely prime submodule of M, if and only if M is a purely prime module.
Next we present the concept of purely uniform module.

Definition (3.1.34)

An R-module M is called purely uniform if the intersection of any two

non-zero pure submodules of M is non-zero.

Equivalently, M is purely uniform if every non-zero pure submodule of M is

essential in M.

Equivalently, M is purely uniform if every non-zero pure submodule of M is

purely essential in M.
Clearly every uniform module is purely uniform.

Remark (3.1.35)

A non-zero pure submodule N of a module M is purely essential if and
only if for each 0 # x € M with Rx is a pure submodule of M there exists

0+#r €Rsuchthat 0 # rx € N.
Proof:
(=) Is clear

(<) Let K be a non-zero pure submodule of M. Let 0 # x € K with Rx is a
pure submodule of M. Then 0 # rx € N for some 0 # r € R (by hypothesis).

Therefore 0 # rx € N n K implies N is purely essential in M.
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Proposition (3.1.36)

Every purely compressible module is purely uniform.
Proof:

Let M be a purely compressible module. Let 0 # x € M such that Rx is a
pure submodule in M and let f: M — Rx be a monomorphism. Then f(x) =
rx for some 0 =#r eR. Let 0 =#m e M and let f(m) = tx = 0 for some
0#t€R. Then f(rm)=rf(m)=r(tx) =t(rx) =tf(x) = f(tx) and
hence rm = tx € Rx and rm # 0. For if rm =0, then 0 = f(rm) = tx =
f(m) gives m = 0 which is a contradiction. So Rx is purely essential in M

and hence M is purely uniform.

In the class of faithful finitely generated multiplication modules we give

the following characterization of purely compressible modules:

Theorem (3.1.37)

Let M be a faithful finitely generated multiplication R-module. Then M
is purely compressible if and only if for each non-zero pure ideal | of R,

anny (1) = 0.
Proof:

(=) Let | be a non-zero pure ideal of R. Then N = IM is a pure submodule of
M [30, theorem 1.4,p.67] but M is purely compressible implies M is purely
prime (by proposition (3.1.24), and hence anniz(M) = anngzg(N) =
anng (IM) = anngl.Therefore anng () = 0(since M is faithful). Now, to
prove anny(I) = 0. Let ann,,(I) = KM for some ideal K of R we have
lanny(I) = 0 and hence IKM = 0 implies IK € annyM =0, so IK =0,

therefore K € anngz (1) = 0,50 K = 0 and hence anny(I) = 0
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(&) To prove M is purely compressible. Let N be a non-zero pure submodule
of M. then N = IM for some non-zero pure ideal | of R [30,theorem 1.4,p.67].
Let 0 + a € I and define f: M — N by f(m) = am for all m € M. Clearly f
iIs a well-defined homomorphism. Let m € kerf. Then am = 0 therefore
m € anny(a). but (a) <1 and | is pure in R implies (a) is pure in R (since
M is faithful multiplication module) by [30,p.65]. Hence anny(a) = 0 (by
hypothesis), so m = 0 and therefore kerf = 0 which gives M is purely

compressible.

Corollary (3.1.38)

Let M be a faithful finitely generated multiplication R-module. Then M
is purely compressible if and only if Homgz(R/I,M) = 0 for each non-zero

pure ideal | of R.
Proof:

By [31,lemma 2.7,p.45], anny(I)~ Homgz(R/I,M) for each ideal | of R

hence the result follows according to theorem (3.1.37).

Since every cyclic module is a multiplication module, the following are

also consequences of theorem (3.1.37).

Corollary (3.1.39)

Let M be a faithful cyclic R-module. Then M is purely compressible if

and only if anny, (1) = 0 for each non-zero pure ideal | of R.

Corollary (3.1.40)

A ring R is purely compressible if and only if anng (I) = 0 for each non-

zero pure ideal | of R.
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Proposition (3.1.41)

Let M be a faithful finitely generated multiplication R-module. Then M

is purely compressible if and only if R is purely compressible ring.
Proof:

(=) Let I be a non-zero pure ideal of R. we have to show that anng(I) = 0.
Let r € anng(l). Then rI =0 and hence rIM = 0 implies that *M <
anny (I). But M is purely compressible by hypothesis and according to
theorem (3.1.37), anny,(I) = 0, hence rM = 0, so r € anng(M) = 0 since
M is faithful and hence r = 0. Therefore anniy(I) = 0 and by corollary

(3.1.40), R is purely compressible ring.

(&) Let | be a non-zero pure ideal of R. Then N = IM is a non-zero pure
submodule of M.[30,theorem 1.4,p.67].But R is purely compressible gives
anng(l) = 0 (by corollary(3.1.40), and it can be checked easily that

anny (1) = (anng(I))M therefore ann,, (I) = 0, so by theorem (3.1.37) , M

Is purely compressible.

Corollary (3.1.42)

Let M be a faithful finitely generated multiplication R-module. If M is

purely prime, then M is purely compressible.
Proof:

Let | be a non-zero pure ideal of R. Then IM is a pure submodule of M
[30,theorem 1.4,p.67].but M is purely prime (by hypothesis), therefore
anng (M) = anng(IM) by definition (3.1.19) and since M is faithful (by
hypothesis)implies anniy (IM) = 0 = anngz(I). But anny, (1) = (anngl)M =
0. M = 0. Therefore ann,, (1) = 0 implies that M is purely compressible (by
theorem (3.1.37).

68



Chapter Three Purely Compressible Modules and Purely Retractable Modules

Corollary (3.1.43)

Let M be a faithful finitely generated multiplication R-module then M is

purely compressible if and only if M is purely prime.
Proof:
Follows from proposition (3.1.24) and corollary (3.1.42).

Corollary (3.1.44)

Let M be a faithful cyclic R-module then M is purely compressible if and

only if M is purely prime.

Corollary (3.1.45)

A ring R is purely compressible if and only if R is purely prime.

Before we state and prove the next result we need to recall and prove the

following two lemmas.

Lemma (3.1.46)

If M is an R-module such that every cyclic submodule is pure, then every

purely prime submodule of M is prime in M.
Proof:

Let N be a purely prime submodule and rx € N with r € R and x € M.By
hypothesis Rx is a pure submodule of M and N is purely prime, implies that

either x € N or r € [N: M] and hence N is a prime submodule of M.

Lemma (3.1.47)

Let R be a ring in which every principal ideal is pure. If P is purely prime

ideal of R, then R/P is purely uniform R-module.
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Proof:

Let A/P be a non-zero pure submodule of R/P. To prove A/P is purely
essential in R/P. Let x + P # P in R/P with R(x + P) is pure in R/P. Let a +
P # P in A/P. Note that x € P and a & P we claim that ax & P. Suppose that
ax € P.As P is purely prime and Rx is pure in R gives either x € P or a €
[P:R]. But x € P, so, a € [P:R] implies aR < P and hence a € P which is a
contradiction. Therefore P # ax + P = a(x + P) € A/P which implies that

A/P is purely essential and hence R/P is purely uniform.

Theorem (3.1.48)

Let R be a ring in which every principle ideal is pure. Let M be a faithful
finitely generated multiplication R-module such that every submodule of a

pure submodule is also pure. Then the following statements are equivalent:
(1) M is purely compressible.

(2) M is isomorphic to an R-module of the form A/P for some purely prime

ideal P of R and an ideal A of R containing P properly.

(3) M is isomorphic to a non-zero submodule of a finitely generated purely

uniform, purely prime R-module.
Proof:
(1)=(2)

Let 0 # m € M and Rm is pure in M. Then Rm is purely compressible by
proposition (3.1.12). Hence Rm is purely prime by proposition (3.1.24). As M
is purely compressible, then there exists a monomorphism, say f: M — Rm
that is M is isomorphic to a submodule of Rm. But Rm = R/ann(m) and M

is purely prime R-module implies that ann(m) is prime, and hence purely
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prime ideal of R by lemma (3.1.23). Let P = ann(m). Then Rm =~ R/P and
M is isomorphic to a submodule of R/P, say A/P where A is an ideal of R

containing P properly and P is a purely prime ideal of R.
(2) =)

By (2), M =~ A/P for some purely prime ideal P of R and an ideal A of R
containing P properly, hence A/P is a non-zero submodule of the finitely
generated module R/P. But P is purely prime ideal of R implies that R/P is
purely prime R-module by lemma(3.1.22) and by Lemma (3.1.47) A/P is

purely uniform R-module.
@) =(@1)

By (3), M is isomorphic to a non-zero submodule of a finitely generated
purely uniform and purely prime R-module, say M,and according to
(corollary (3.1.42) M is purely compressible R-module hence M is purely
compressible R-module (by proposition (3.1.1Y)).

Corollary (3.1.49)

Let R be a ring in which every principle ideal is pure. Let M be a cyclic
faithful R-module such that every submodule of a pure submodule is also

pure. Then the following statements are equivalent:
(1) M is purely compressible.

(2) M is isomorphic to an R-module of the form A/P for some purely prime

ideal P of R and an ideal A of R containing P properly.

(3) M is isomorphic to a non-zero submodule of a finitely generated purely

uniform, purely prime R-module.
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3.2. ®urely Critically Compressible Modules

A special type of purely compressible modules is given and studied in

this section, namely purely critically compressible module.

Definition (3.2.1)

An R-module M is called purely critically compressible if M is purely
compressible and M cannot be embedded in any of its quotient modules M/N

with N is a non-zero proper pure submodule of M.

Examples and Remarks (3.2.2)

(1) Every critically compressible module is purely critically compressible. In
particular Z as a Z-module is purely critically compressible, in fact it is

critically compressible.

(2) Z,, as a Z-module is not purely critically compressible vn > 1.
(3) The Z-module Q is not purely critically compressible.

(4) Z,~ as a Z-module is not purely critically compressible.

(5) If R is a regular ring (in the sense of von Neumann), then R as an
R-module is critically compressible if and only if R is purely critically
compressible. This is follows from the fact that R is a regular ring if and only

if every ideal of R is pure.

(6) If M is a regular module then M is purely critically compressible if and

only if M is critically compressible.

Proposition (3.2.3)

Let M be a purely critically compressible module then every non-zero

pure submodule of M is also purely critically compressible.
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Proof:

Let N be a non-zero pure submodule of M. Then N is purely compressible (by
proposition (3.1.12). Let H be a pure submodule of N. Then H is pure in M
and N/H is pure in M/H (by Remark (3.1.5, (2) and (3)). Suppose that there is

a monomorphism, say a: N - N/H. But M is purely compressible implies
. i .. f
that there is a monomorphism, say f: M — N. Then the composition M— N

5 N/H —l>M/H Is @ monomorphism where i is the inclusion homomorphism.
So M is embedded in M/H which is a contradiction since M is purely critically

compressible. Hence N is purely critically compressible.

Corollary (3.2.4)

A non-zero direct summand of a purely critically compressible is also

purely critically compressible.
Now, we need to introduce the following concept:

Definition (3.2.5)

A pure partial endomorphism of a module M is a homomorphism from a

pure submodule of M into M.

Examples (3.2.6)

(1) If N is a pure submodule of a module M, then the inclusion

homomorphism i: N - M is a pure partial endomorphism of M.

(2) If N is a direct summand of an R-module M, then every homomorphism

from N into M is a pure partial endomorphism of M.

(3) If M is a regular module (or a semisimple module). Then every partial

endomorphism of M is a pure partial endomorphism of M.
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Proposition (3.2.7)

Let M be a fully stable module in which every submodule of a proper
pure submodule is also pure. If M is purely critically compressible, then every

non-zero pure partial endomorphism of M is a monomorphism.
Proof:

Let N be a non-zero pure submodule of M and f: N - M be a non-zero
partial endomorphism then N /kerf =~ f(N). By hypothesis each of kerf and
f(N) is pure in M, and since M is purely compressible then there is a

monomorphism, say g: M — f(N). Then the composition

M5 f(N)— 2 N/kerf —-— M/kerf is an embedding of M into

M /kerf which is a contradiction since M is purely critically compressible.

Therefore kerf = 0 and hence f is a monomorphism.

Proposition (3.2.8)

Let M be a purely compressible module such that the quotient of every
submodule of M by a pure submodule is pure. If every non-zero pure partial
endomorphism of M is a monomorphism, then M is purely critically

compressible.
Proof:

Assume that M is not purely critically compressible. Therefore there is a non-
zero pure submodule N of M and a monomorphism f: M — M /N. Hence M is
isomorphic to a submodule say K/N of M/N. By hypothesis K/N is pure in
M/N and since N is pure in M implies K is pure in M (by Remark (3.1.5),(4)).

The composition K 5 K/N—&e M is a pure partial endomorphism of M.
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So by hypothesis @m is a monomorphism and hence ker(¢m) = 0 = kerm =

N which is a contradiction.

Proposition (3.2.9)

Every purely critically compressible module is indecomposable but not

conversely.
Proof:

Let M be a purely critically compressible module. Suppose that M is
decomposable. Then M = A@®B with A and B are non-zero proper pure
submodules of M. So, B ~ M/A. Let a: B —» M /A be an isomorphism but M
is purely compressible, hence there is a monomorphism say f: M — B and

therefor af: M — M /A is a monomorphism, which is a contradiction,

For the converse Q as a Z-module is indecomposable but not purely critically

compressible.

3.3 ®urely Retractable Modules

In this section we introduce and study the concept purely retractable
module as a generalization of retractable module. Some characterizations of
such modules are given. Moreover, the relationships between this concept and

some other types of module are also investigated.

Definition (3.3.1)

An R-module M is called purely retractable if Hom(M, N) # 0 for each

non-zero pure submodule N of M.

A ring R is called purely retractable if the R-module R is purely retractable,

that is Homg (R, ) #+ 0 for each non-zero pure ideal | of R. "where an ideal |
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of R is called pure if IJ =1n]J for each ideal J of R" [47,proposition
1.3,p.8].

Examples and Remarks (3.3.2)

(1) Every retractable module is purely retractable, but the converse is not true

a b

in general. Consider example (1.2.6) where S = {(0 C):a,b ER}, Sisa

a b

retractable ring and I = {(0 0

):a,b € R} is a non-retractable S-module.

a 0

We claim that | is purely retractable. Let J = {(0 0

):aeR} and K =

{(8 g) :b € R}, Jand K are the only non-zero proper submodules of I and it

is clear that I = J@®K and hence J and K are pure in I. Also it is clear that

Hom(1,]) + 0 and Hom,(I,K) # 0 so, | is a purely retractable S-module.

(2) Every pure simple module is purely retractable. The Z-modules Z, Z, and

Zpe are pure simple. On the other hand Z,,= is not retractable Z-module.

(3) Every purely compressible module is purely retractable and the converse
need not be true in general. For example, Z, as a Z-module is purely

retractable but not purely compressible.

(4) If M is a regular module, then M is purely retractable if and only if M is

retractable.

(5) If R is a regular ring and M is an R-module, then M is purely retractable if

and only if M is retractable.
(6) Every semisimple (simple) module is purely retractable.

(7) Let M be an R-module. Then M is purely retractable R-module if and only

if M is purely retractable R /annM-module.

76



Chapter Three Purely Compressible Modules and Purely Retractable Modules

Proposition (3.3.3)

If M, and M, are two isomorphic modules, then M, is purely retractable

if and only if M, is so.
Proof:
As in the proof (3.1.11) and proof (1.2.3).

Proposition (3.3.4)

Let M be an R-module such that Endz (M) is a Boolean ring. If M is
purely retractable, then every non-zero pure submodule of M is also purely

retractable.
Proof:
As in the proof of proposition (1.2.7).

Corollary (3.3.5)

Let M be a module such that End(M) is a Boolean ring. If M is purely

retractable, then every direct summand of M is also purely retractable.

Proposition (3.3.6)

If N is a proper purely prime submodule of a module M such that
[N: M] 2 [K: M] for all submodules K of M containing N properly, then M/N

is purely retractable.
Proof:

Let L/N be a pure submodule of M/Nwith L is a submodule of M containing
N properly. By hypothesis [N: M] 2 [L: M], so there exists t € [L: M] and t &
[N: M]. Define f:M/N — L/N such that f(m+ N) =tm+ N for all m €
M. Clearly f is a homomorphismand f # 0,if f = 0thentm + N = N, tm €
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N for all m € M. Thus t € [N: M] which is a contradiction. Therefore M /N is

purely retractable.

We are now going to investigate when a purely retractable is purely

compressible.

Proposition (3.3.7)

Let M be a purely retractable quasi-Dedekind R-module, then M is a

purely compressible.
Proof:

Let N be a non-zero pure submodule of M and let f: M — N be a non-zero
homomorphism. then fi: M — M be an endomorphism on M, where i: N - M
Is the inclusion homomorphism. By hypothesis if is a monomorphism and

hence f is a monomorphism. Therefore M is purely compressible.

Corollary (3.3.8)

Let M be a purely retractable quasi-Dedekind module. Then M is purely

prime and purely uniform.
Proof:

By corollary (3.3.7), M is purely compressible and according to proposition

(3.1.24) and (3.1.36), M is purely prime and purely uniform.

Corollary (3.3.9)

If M is a purely retractable quasi-Dedekind module in which the quotient
of every submodule of M by a pure submodule of M is also pure, then M is

purely critically compressible.
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Proof:

By corollary (3.3.7), M is purely compressible and by proposition (3.2.8), M

is purely critically compressible.

3.4 Some Characterizations of Purely Retractable Modules

We introduce in this section necessary and (or) sufficient conditions for a

module to be purely retractable.

As a characterization of purely retractable module we have the following

proposition

Proposition (3.4.1)

Let M be a module. Then M is purely retractable if and only if there
exists 0+ ¢ € End, (M) such that Im¢@ < N for each non-zero pure
submodule N of M.

Proof:

(=) Suppose that M is purely retractable. Let N be a non-zero pure submodule
of M. Then Hom, (M,N)+0. Let 0+ f:M—>N be a non-zero
homomorphism. Let ¢ =if where i:N —- M Dbe the inclusion homo-

morphism, then ¢ € End, (M), ¢ # 0 and Imp =if (M) = f(M) € N.

(&) To prove M is purely retractable, let N be a non-zero pure submodule of
M. By hypothesis, there exists a non-zero endomorphism ¢@: M — M such that
Ime = (M) S N, hence ¢: M = N is a non-zero homomorphism, thus 0 #

@ € Hom(M, N), therefore M is purely retractable.
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Proposition (3.4.2)

Let M be a module such that every cyclic submodule of a pure
submodule of M is pure in M. Then M is purely retractable if and only if
Hom(M, Rx) # 0 for each 0 # x € M with Rx is pure in M.

Proof:
(=) Obvious.

(<) Let N be a non-zero pure submodule of M. Let 0 # x € M. By hypothesis
Rx is pure in M and Hom(M, Rx) # 0 and hence Hom(M, N) # 0, therefore

M is purely retractable.

Corollary (3.4.3)

Let M be a module in which every cyclic submodule of M is pure. Then

M is purely retractable if and only if Hom(M, Rx) # 0 for each 0 # x € M.

Corollary (3.4.4)

Let R be a regular (Von-Neumann) ring. Then every projective R-module

is purely retractable (In fact retractable).
Proof:

Let M be a projective R-module and let 0 # x € M. Since R is a is regular
ring, then Rx is a direct summand of M, [44,Exercies 17,p.57]. Therefore Rx is
a pure submodule of M (by Remark (3.1.5),(1)) and Hom(M, Rx) # 0. Hence
M is purely retractable (by corollary (3.4.3)).

In order to give other consequences of proposition (3.4.2) we need to
recall the following definition
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"Definition (3.4.5)[44]

An R-module M is called finitely presented (f.p.) if there exists a short

f i ..
exact sequence 0 > K - F % M - 0 such that F is a finitely generated free

R-module and K is a finitely generated R-module”.

Corollary (3.4.6)

Every finitely presented module is purely retractable.
Proof:

Let M be a f.p. module. Let 0 # x € M such that Rx is pure in M. Then Rx is a
direct summand of M [44, ,Exercies 32,p.163]. Therefore Hom(M, Rx) # 0

and according to corollary (3.4.3) M is purely retractable.

Corollary (3.4.7)

Every finitely generated projective module is purely retractable.
Proof:

Let M be a finitely generated projective module. Then M is finitely presented

[44, Exercies 1,p.159] and by corollary (3.4.6) M is purely retractable.

In the following proposition we also give a sufficient condition for a

module to by purely retractable.

Proposition (3.4.8)

Let M be a module such that every non-zero pure submodule of M

contains a non-zero direct summand of M. Then M is purely retractable.
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Proof:

Let N be a non-zero pure submodule of M. By hypothesis thereis0 # A < N
and A is a direct summand of M. So, M = A®B for some 0 # B < M . Let
pa:M — A be the projection homomorphism. Therefore p, € Hom(M, A)

and ip, € Hom(M, N) where i: A = N is the inclusion homomorphism.

If ipy =0, then 0=1ip,(M) =pu(M) =~ A, impliesA =0 which is a

contradiction therefore Hom(M, N) # 0, hence M is purely retractable.

While the following proposition gives a sufficient condition for a purely

retractable module to be retractable:

Proposition (3.4.9)

Let M be a module such that every non-zero submodule of M contains a
non-zero direct summand of M. if M is purely retractable, then M is

retractable.
Proof:

Let 0 # N < M. By hypothesis there is a direct summand of M, say K and
K € N. Then K is pure in M (Remark (3.1.5),(1)) As M is purely retractable
implies Hom(M,K) +#0 and hence Hom(M,N) # 0. Therefore M is

retractable.

Corollary (3.4.10)

Let M be a module such that every non-zero submodule of M contains a
non-zero direct summand of M. Then M is retractable if and only if M is

purely retractable.

Now, the following definition is needed:
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"Definition (3.4.11)[32]

A module M is called purely lifting module if for every submodule N of M,
there exists a pure submodule K of M suchthat K € N and N/K < M /K",

The following corollary is a direct consequence of proposition (3.4.9):

Corollary (3.4.12)

If M is a purely lifting module, then M is retractable if and only if M is

purely retractable.

"Definition (3.4.13)[ 34]

An R-module M is called a V-module, if for every factor module N of
M,Rad(N) = 0".

Proposition (3.4.14)

Let M be a V-module. If M is purely lifting, then M is retractable if and

only if M is purely retractable.
Proof:

As M is a V-module, then M is purely lifting if and only if M is a regular
module [32,proposition 2.2.4,p.40]. And according to (Examples and
Remarks (3.3.2),(4)), M is retractable if and only if M is purely retractable.

Proposition (3.4.15)

Let M be a finitely generated multiplication R-module,then M is purely

retractable module.
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Proof:

Let N be a non-zero pure submodule of M. Then N = IM for some non-zero
ideal | of R. We claim that I is pure in R. Let J be an ideal of R. Then JM n
N=/MnIM = (JnI)M (since M is faithful multiplication), but IM is pure
in M. gives IMNIM = J(IM) = (JI)M.Hence J nI)M = (JI)M,so ] NI =
JI[ 48,proposition 3.4,p.55]. Therefore | is a pure ideal in R. But R is purely
retractableby (Examples and Remarks 1.2.2,(1))implies that Hom(R,I) # 0.
Let 0 # f: R — I be a homomorphism. Let f(1) = a. Then a # 0. Define
g:M >N by gim)=am for all me M clearly, g is a well-defined
homomorphism, and g # 0 since M is faithful. Therefore Hom(M,N) # 0

which is what we wanted.

Corollary (3.4.16)

Every faithful cyclic R-module is also purely retractable.

Now, we present the concept of purely epi-retractable module as in the

following definition:

Definition (3.4.17)

A module M is called purely epi-retractable if every pure submodule of
M is a homomorphic image of M. That is, whenever N is a pure submodule of

M, then there exists an epimorphism from M onto N.

Examples and Remarkes (3.4.18)

(1) Every purely epi-retractable module is purely retractable

21 = {(3 2) :a,b € R} in (3.3.2,(1)) is purely epi-retractable S-module.
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(3) Q as a Z-module is not epi-retractable and hence not purely epi-

retractable.
(4) Every semisimple module is purely epi-retractable.
(5) Every pure simple module is purely epi-retractable.

(6) If M is a regular module (or R is a regular ring), then M is purely epi-

retractable if and only if M is epi-retractable.

Proposition (3.4.19)

A non-zero pure submodule of purely epi-retractable module is also

purely epi-retractable.
Proof:

Let M be a purely epi-retractable module and let N be a non-zero pure
submodule of M. let K be a non-zero pure submodule of N. Then K is pure in
M (by Remark 3.1.5,(2)). Therefore there are epimorphisms f:M — N

and g:M - K. Define h: N = f(M) - K = g(M) by h(f(m)) = g(m) for
all meM. Clearly he€ Hom(N,K) and h =+ 0, for if h=0. Then
h(f(M)) = 0= g(M) =K which is a contradiction. Moreover h is an
epimorphism, since h(N) = h(f(M)) = g(M) = K. Thus N is purely epi-

retractable.

Corollary (3.4.20)

A direct summand of purely epi-retractable is also purely epi-retractable.

Proposition (3.4.21)

Let M be a purely epi-retractable module and N be a pure submodule of

M. Then M/N is purely epi-retractable.
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Proof:

Let 0 # K/N be a pure submodule of M/N, where K is a proper submodule
of M containing N properly. Since N is pure in M and K/N is pure in M/N
implies that K is pure in M (by Remark 3.1.5,(4)). Hence there is an
epimorphism, say f: M — K (since M is purely epi-retractable by hypothesis).
f induces a homomorphism f: M/N — K /N with f(m + N) = f(m) + N for
all meM.f+#0for if f=0, then 0=f(M/N)=f(M)+N=K+N
(since f is an epimorphism). Hence K + N = N implies K = N which is a
contradiction. Therefore Hom(M/N,K/N)# 0. Moreover f(M/N) = K/N.
Thus M/N is purely epi-retractable.

Proposition (3.4.22)

Let M,and M,be two purely epi-retractable modules such that annM; +

annM, = R. Then M; @M, is also purely epi-retractable.
Proof:

Let N be a non-zero pure submodule of M;@M,. Then by [31,proposition
4.2p.28] N = N;®N, for some submodule N; of M; and N,of M,. By
[13,proposition 4.2 ] N, is pure in M; and N, is pure in M,. Therefore there
are epimorphisms  f:M; - N; and g: M, — N,.Define h: M\;®M, — N by
h(m;,m,) = (f(my),g(m,)) for all (my,m,) € M;@M,. Clearly, h is a
non-zero homomorphism and h is an epimorphism. Therefore M;@®M, is

purely epi-retractable.

Corollary (3.4.23)

Let {M;}?,be a finite family of purely epi-retractable modules such that

“,annM; = R. Then @}, M; is also purely epi-retractable.
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Chapter Four

Primely Compressible Modules and Primely
Retractable Modules

Introduction

The last generalization for compressible and retractable modules in our
work is given by using the concept of prime submodules. This is the subject
of this chapter, where we introduce in this chapter the concepts of primely
compressible and primely retractable modules. The chapter consists of five
sections. In the first section we introduce the concepts of generalized prime
modules and generalized prime submodule which are basic concepts in our
study of the subject of chapter four, where we give this concepts with some of
their basic properties which are needed in the next sections. In section two,
we give the concept of primely compressible modules with some examples,
basic properties, characterizations and the relationships of such modules with
some types of modules. In the third section, we give and study a sort of
primely compressible modules, namely primely critically compressible
modules. The forth section is devoted to primely retractable modules, where
we give the definition with many examples; also we investigate the basic
properties of such modules. In section five, we give necessary and (or)
sufficient conditions for modules to be primely retractable. Moreover in this
section, we present the concept of primely epi-retractable modules with some

examples and study some of its basic properties.
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4.1 Generalized Prime Modules

In this section we shall introduce the concepts generalized prime module
and generalized prime submodules and study some of their properties that are

related to our work in the next sections of this chapter.

"Definition (4.1.1)[29]

A module M is called fully prime if every proper submodule of M is a

prime submodule”.
Z, as a Z-module is fully prime for each prime number P.

Examples and Remarks (4.1.2)

(1) Each of Q and Z as Z-modules is prime module.

(2) Z is not prime submodule of Q. In fact (0) is the only prime submodule of

Q. while pZ is a prime submodule of Z for each prime number p.

(3) "A module M is torsion-free if and only if M is a prime and faithful
module"[12,remark 1.1,p.33].

(4) "Every direct summand of a prime module is a prime submodule”
[12,proposition 1.2,p.34]

(5) "A module M is prime if and only if 0 is a prime submodule of
M"[29,p.303]

(6) "Let p be a prime number. Then the Z-module Z,~ has no prime

submodules"[2,Example and Remark 1.1.20,p.34].
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As a generalization of prime module and prime submodule we introduce
the concepts generalized prime module and generalized prime submodule as

follows:

Definition (4.1.3)

An R- module M is called a generalized prime module if ann(M) =

ann(N) for each non-zero prime submodule N of M.

Examples (4.1.4)

(1) Every prime module is generalized prime but not conversely in general,
for example the Z-module Z,- is a generalized prime, since it is primeless

(has no prime submodules) but it is not prime.
(2) Every simple module is generalized prime.
(3) Every torsion-free fully prime module is a generalized prime.

Definition (4.1.5)

A submodule N of a module M is called generalized prime submodule if
whenever rx € N with r € R and x € M and Rx is a prime submodule of M,
then either x € N orr € [N: M].

Every prime submodule is a generalized prime submodule but not conversely.

For example: The Z-module Z,,is not a prime submodule of Z,,, but it is a

generalized prime submodule of Z,.

Proposition (4.1.6)

Let M be a generalized prime module then (0) is a generalized prime
submodule of M. The converse holds if every cyclic submodule of M is a

prime submodule of M.
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Proof:

(=) Letr e R,x € M and Rx is a prime submodule of M such that rx = 0.
If x+#0, then annM = ann(x) (Since M is generalized prime by
hypothesis).Hence r € annM = [0: M]. If x = 0, then x € (0). Therefore (0)

Is generalized prime submodule of M.

(&) Suppose that 0 is a generalized prime submodule of M, let N be a non-
zero prime submodule of M and let r € annN. Thenrx = 0 for all x € N. So,
rx € (0). Assume that x # 0, then r € [0: M](since (0) is a generalized prime
submodule of M by hypothesis), but [0: M] = annM, hence r € annM gives

annN € annM and therefore annM = annN, thus M is generalized prime.

Corollary (4.1.7)

Let M be a module such that every cyclic submodule of M is prime. Then N
is generalized prime submodule of M if and only if M/N is a generalized

prime module.

Propsition (4.1.8)

Let M be an R-module such that a non-zero cyclic submodule of a direct
summand of M is a prime submodule of M. If M is a generalized prime, then

every non-zero direct summand of M is a prime submodule of M.
Proof:

Let K be a non-zero direct summand of M. then M = K@H for same non-zero
submodule H of M. to prove K is a prime submodule of M. Let rx € K with
re€Randx € M. Thenx =a+ b witha € K and b € H, suppose that x ¢ K
then b #0rx=ra+rband rb =rx —ra € HN K = (0). Thus rb = (0)
and (b) is a non-zero submodule of H by hypothesis (b) is a prime submodule

of M. And (0) is generalized prime submodule of M by Proposition (4.1.6)
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implies that r € [0: M] = ann M (Since b # 0). So rM = (0), therefore r €
[K: M] which gives K is a prime submodule of M.

"Definition (4.1.9)[49]

An R-module M is called Z-regular module if for all a € R, there exists

x € R such that a = axa".

Proposition (4.1.10)

Let M be a Z-regular R-module. If M is generalized prime such that a
non-zero cyclic submodule of a direct summand of M is a prime submodule of
M ,then annN is a prime ideal of R for each non-zero cyclic prime submodule
N of M.

Proof:

Let 0 # N = (x) be a prime submodule of M. Let a,b € R such that abN =
0.Then abx = 0.Suppose that bx # 0. Let K = (bx), then K < N. But M is
regular gives K is a direct summand of M [49,proposition 2.3,p.30], and by
proposition (4.1.8) K is a prime submodule of M. But a € annK implies a €
annM = annN (since M is generalized prime) therefore annN is a prime
ideal of R.

4.2 ®Primely Compressible Modules

We shall give in this section the concept of primely compressible module
as a generalization of compressible modules. Many basic properties of such
modules are also studied. Moreover the relationships between these types of

modules are given.
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Definition (4.2.1)

An R-module M is called primely compressible if M can be embedded in
each of its non-zero prime submodule. That is M is purely compressible if
there exists a monomorphism f: M — N whenever N is a non-zero prime

submodule of M.

A ring R is primely compressible if R as an R-module is primely

compressible.

Examples and Remarks (4.2.2)

(1) Every compressible is primely compressible but the converse need not be
true in general, for example the Z-module Q is not compressible but primely

compressible since 0 is the only prime submodule of Q.

(2) If R is an integral domain and K is the field of fraction of R, then O is the
only prime submodule of K as an R-module [29] so, K is a primely

compressible R-module.
(3) Every simple module is primely compressible.

(4) If M is a fully prime module, then M is primely compressible if and only if

M is compressible.

(5) Let M be a torsion-free module such that [N: M] = 0 for each proper
submodule N of M. Then M is primely compressible if and only if M is purely

compressible.
Proof:

Since M is torsion-free and [N: M] = 0 for each proper submodule N of M
implies that N is a prime submodule of M if and only if N is a pure submodule
of M [15]. Hence the result follows.
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(6) Let M be a prime faithful module such that [N: M] = 0 for each proper
submodule N of M. Then M is primely compressible if and only if M is a

purely compressible.
Proof:

Since M is faithful prime module then M is torsion-free [12,Remark 1.1,p.33]

and by (5) M is primely compressible if and only if M is purely compressible.

(7) Let M be a prime module such that annM = [N: M] for each proper
submodule N of M. Then M is primely compressible if and only if M is purely

compressible.
Proof:

According to the hypothesis and[12,proposition 1.3,p.34] implies that N is
prime submodule of M if and only if N is a pure submodule of M. Therefore

the result follows.

Proposition (4.2.3)

If M, and M,are isomorphic R-modules, then M;is primely compressible

if and only if M, is so.
Proof:

Assume that M, is primely compressible and let ¢:M; - M, be an
isomorphism and N be a non-zero prime submodule of M,.Then ¢(M;) ¢ N,
for if ¢(M;) € N implies M, € N that is M, = N which is a contradiction
since N is a prime submodule of M,. Therefore ¢ ~1(N) is a prime submodule
of M,[37,proposition 1.2,p.1043] So, there exists a monomorphism say
f:M; > K where K=¢ }(N) (since M; is primely compressible by
hypothesis). Let g-= q)‘K . Then g: K - M, is a monomorphism and g(K) =
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oK) = p(¢ *(N)) = N. So g:K - N is a monomorphism. Now, we have

1

. .. - f . i
the following composition M, Z, M; -> K LNisa monomorphism from M,

into N which means that M, is primely compressible.

Now, the following condition is needed

(*) Let M be a module satisfying VK < N < M if N is a prime submodule of

M and K is a prime submodule of N, then K is a prime submodule of M.

Proposition (4.2.4)

Let M be a module satisfying (*). If M is primely compressible, then

every non-zero prime submodule of M is also primely compressible.
Proof:

Let M be a primely compressible module and N be a non-zero prime
submodule of M and K be a non-zero prime submodule of N.As M has
condition (*) gives K is a prime submodule of M.Therefore there is a
monomorphism say f: M — K and hence if: K — N is also a monomorphism
where i:K — N is the inclusion homomorphism. Thus N is purely

compressible.

Corollary (4.2.5)

Let M be a fully prime module which has condition (*). If M is primely

compressible, then every non-zero submodule of M is primely compressible.

Corollary (4.2.6)

Let M be an F-module (F is a field) and M has condition (*). If M is
primely compressible then every non-zero submodule of M is primely

compressible.
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Proof:

Let 0 += N < M. Then N is a prime submodule of M since F is a field and by

proposition (4.2.4) N is primely compressible.

Corollary(4.2.7)

Let M be a prime module which has the condition (*). If M is primely
compressible, then every non-zero direct summand of M is primely

compressible.
Proof:

Let N be a non-zero direct summand of M. Then N is a prime submodule of
M by (Examples and Remarks4.1.2,(4)) and by proposition (4.2.4) N is

primely compressible.

Remark (4.2.8)

The direct sum of primely compressible modules is not necessary

primely compressible. Consider the following example

Example (4.2.9)

Let M = Z, as a Z-module. Clearly Z, is primely compressible. On the
other hand Z, @ Z, is prime Z-module[29,Lemma 1.1,p.305 ] and hence Z, is
a prime submodule of Z, @ Z,(Remarks and Examples 4.1.4,(4)) but Z, @
Z, cannot be embedded in Z,. Therefore Z, @ Z, is not primely

compressible.

Proposition (4.2.10)

If M is primely compressible, then M is generalized prime module.
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Proof:

Let M be a primely compressible module. Let N be a non-zero prime
submodule of M. we have to show that annM = annN.Let r € annN. Then
rN = 0. Let f: M — N be a monomorphism, then f(rM) =rf(M) € rN =0

implies that rM = 0, thus r € annM and therefore annM = annN.

Remark (4.2.11)

The converse of proposition (4.2.10) is not true in general, for
example, Z, @ Z, is a prime Z-module and hence generalized prime, but it is

not primely compressible.

Next we present the concept of purely uniform module.

Definition (4.2.12)

An R-module M is called primely uniform if the intersection of any two

non-zero prime submodules of M is non-zero.

Equivalently, M is primely uniform if every non-zero prime submodule of M

is primely essential in M.
Clearly every uniform module is primely uniform

Proposition (4.2.13)

A non-zero prime submodule N of a module M is primely essential if and
only if for each 0 # x € M with Rx is a prime submodule of M there exists

0+#7r €Rsuchthat 0 # rx € N.
Proof:

(=) Is clear
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(<) Let K be a non-zero prime submodule of M. Let 0 # x € K with Rx is a
prime submodule of M. Then 0#rx €N for some 0 =#r €R(by
hypothesis). Therefore 0 # rx € N n K implies N is primely essential in M.

Proposition (4.2.14)

Every primely compressile module is primely uniform
Proof:

Let N be a prime submodule of M. let 0 # x € M such that Rx is a prime
submodule of M. Then there exists a monomorphism, say f: M — Rx. Let
0#meN. Then f(m)=tx forsome 0 #t€R, and f(x) =rx for
some 0 #r ER,f(rm) =rf(m) =r(tx) = t(rx) = tf (x) = f(tx)

therefore rm = tx € N and tx # 0.So N is primely essential in M and hence

M is primely uniform.

In the class of faithful finitely generated multiplication modules we give

the following characterization of primely compressible modules:

Theorem (4.2.15)

Let M be a faithful finitely generated multiplication R-module.
If M is primely compressible, then for each non-zero prime ideal | of R,

anny (1) = 0.
Proof:

Let | be a non-zero prime ideal of R. Then N = IM is a prime submodule of
M [46,proposition 4.6,p.28] but M is primely compressible implies M is
generalized prime (by proposition(4.2.10), and hence anngzg(M) =
anng (N) = anng(IM) = anng(I), therefore anngz(I) =0 (since M is
faithful). Now, to prove ann,,(I) = 0. Let ann,, (1) = KM for some ideal K
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of R we have Iann, (1) = 0 and hence IKM = 0 implies IK € annygM = 0,

so IK = 0, therefore K < anngz(I) = 0,50 K = 0 and hence ann,, (1) = 0
The converse holds in case every non-zero principal ideal of R is prime.

Theorem (4.2.16)

Let R be a ring such that every non-zero principal ideal of R is prime. If
M is a faithful finitely generated multiplication and ann,,(I) = 0 for each

non-zero prime ideal | of R, then M is primely compressible.
Proof:

Let N be a non-zero prime submodule of M. then N = IM for some non-zero
prime ideal | of R [46,proposition 4.6,p.28]. Let 0 # a € [ and define f: M —
N by f(m) = am for all m € M. Clearly f is a well-defined homomorphism.
Let m € kerf. Then am = 0 therefore m € anny(a),but (a) <1 and 1 is
prime in R implies (a) is prime in R by hypothesis. Hence ann, (a) = 0 (by
hypothesis), so m = 0 and therefore kerf = 0 which gives M is primely

compressible.

Corollary (4.2.17)

Let M be a faithful finitely generated multiplication R-module. Then M
is primely compressible if and only if Homg(R/I,M) = 0 for each non-zero

prime ideal | of R. where every non-zero principal ideal of R is prime.
Proof:

By [31,Lemma 2.7,p.45], anny(I)=~ Homgz(R/I,M) for each ideal | of R

hence the result follows according to theorem (4.2.15) and theorem (4.2.16).
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Since every cyclic module is a multiplication module, the following are

also consequences of theorem (4.2.15) and theorem (4.2.16).

Corollary (4.2.18)

Let M be a faithful cyclic R-module. Then M is primely compressible if
and only if ann,,(I) = 0 for each non-zero prime ideal | of R. where every

non-zero principal ideal of R is prime.
Proof:

(=) follows directly by proposition (4.2.15)
(<)Follows from proposition (4.2.17)

Corollary (4.2.19)

A ring R in which every non-zero principal ideal is prime is primely

compressible if and only if anng (1) = 0 for each non-zero prime ideal | of R.
Proof:

(=) follows directly by proposition (4.2.15)

(<)Follows from proposition (4.2.17)

roposition (4.2.20)

Let M be a faithful finitely generated multiplication R-module, If M is

primely compressible, then R is primely compressible.
Proof:

Let | be a non-zero prime ideal of R. we have to show that anngy (1) = 0. Let
r € anng(I). Then rI = 0 and hence rIM = 0 implies that rM < anny (I).

But M is primely compressible by hypothesis and according to theorem
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(4.2.15). anny (1) =0, hence rM =0, so r € anng(M) =0 since M is
faithful and hence r = 0. Therefore anng (1) = 0 and by corollary (4.2.19), R

is primely compressible ring.

Proposition (4.2.21)

Let R be a primely compressible ring such that every non-zero principal
ideal of R is prime. If M is a faithful finitely generated multiplication module,

then M is primely compressible.
Proof:

Let | be a non-zero prime ideal of R and R is primely compressible gives
anng(I1) = 0 by corollary(4.2.19), and it can be checked easily that
anny, (I) = (anng(I))M therefore ann,, (I) = 0, so by theorem (4.2.16) , M

is primely compressible.

The following proposition is a partial converse of proposition (4.2.10)

Proposition (4.2.22)

Let M be a faithful finitely generated multiplication module. If M is

generalized prime, then M is primely compressible.
Proof:

Let | be a non-zero prime ideal of R. Then IM is a prime submodule of M
[46,proposition 4.6,p.28] but M is generalized prime (by hypothesis),
therefore anng (M) = anngi (IM) by definition (4.1.Y) and since M is faithful
(by hypothesis) implies anng(IM) = 0 = anng(l). But anny(l) =
(anngl)M = 0.M = 0. Therefore ann, (1) = 0 implies that M is primely
compressible (by theorem (4.2.16).
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Corollary(4.2.23)

Let M be a faithful finitely generated multiplication R-module then M is

primely compressible if and only if M is generalized prime.
Proof:
Follows from proposition (4.2.10) and proposition (4.2.22).

Corollary (4.2.24)

Let M be a faithful cyclic R-module then M is primely compressible if

and only if M is generalized prime.

Corollary (4.2.25)

A ring R is primely compressible if and only if R is generalized prime.
Now, we need to state and prove the following lemma.

Lemma (4.2.26)

Let R be a ring in which every principal ideal of R is prime. If P is a

generalized prime ideal of R, then R/P is primely uniform R-module
Proof:

Let P+ A/P be a prime submodule of R/P. To prove A/P is primely
essential in R/P. Let P # x + P € R/P with R(x + P) is a prime submodule
of R/P. Let P#+a+ P € A/P. Suppose that ax € P we have a € P,x ¢ P
and Rx is prime in R implies that a € [P: R]. Hence aR € P gives a € P
which is a contradiction. Therefore ax ¢ P thatis P # ax + P = a(x + P) €

A/P which completes the proof.
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Theorem (4.2.27)

Let R be a ring in which every principal ideal is prime. Let M be a Z-
regular faithful finitely generated multiplication R-module which satisfy
condition (*)such that a non-zero cyclic submodule of a direct summand of M

is prime submodule of M. Then the following statements are equivalent:
(1) M is primely compressible.

(2) M is isomorphic to an R-module of the form A/P for some generalized

prime ideal P of R and an ideal A of R containing P properly.

(3) M is isomorphic to a non-zero submodule of a finitely generated primely

uniform, generalized prime R-module.
Proof:
1)=Q?)

Let 0 # m € M and Rm is prime in M. Then Rm is primely compressible by
proposition (4.2.4). Hence Rm is generalized prime by proposition (4.2.10).
As M is primely compressible, then there is a monomorphism, say f: M —
Rm that is M is isomorphic to a submodule of Rm. But Rm = R /ann(m) and
by proposition (4.2.10) M is generalized prime R-module implies that
ann(m) is aprime ideal of R by proposition (4.1.10). Let P = ann(m). Then
Rm =~ R/P and M is isomorphic to a submodule of R/P, say A/P where A is

an ideal of R containing P properly.
(2) =)

By (2), M =~ A/P for some generalized prime ideal P of R and an ideal A of R
containing P properly, hence A/P is a non-zero submodule of the finitely
generated module R/P. On the other hand R/P is a generalized R-module by

102



Chapter Four Primely Compressible Modules and Primely Retractable Modules

(corollary 4.1.7) and by lemma (4.1.26), R/P is primely uniform and hence (3)

follows.
(3)=(1)

By (3), M is isomorphic to a non-zero submodule of a finitely generated
primely uniform and generalized prime R-module, say M,and according to
(proposition(4.2.22) M is primely compressible R-module hence M is primely

compressible R-module (by proposition (4.2.3)).

Corollary (4.2.28)

Let R be a ring in which every principal ideal is prime. Let M be a Z-
regular cyclic faithful R-module which satisfy condition (*)such that a non-
zero cyclic submodule of a direct summand of M is prime submodule of M.

Then the following statements are equivalent:
(1) M is primely compressible

(2) M is isomorphic to an R-module of the form A/P for some generalized

prime ideal P of R and an ideal A of R containing P properly.

(3) M is isomorphic to a non-zero submodule of a finitely generated primely

uniform, generalized prime R-module.

4.3. Primely Critically Compressible Modules

A special type of primely compressible modules is given and studied in

this section, namely primely critically compressible module.
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Definition (4.3.1)

An R-module M is called primely critically compressible if M is primely
compressible and M cannot be embedded in any of its quotient module M/N

with N is a non-zero proper prime submodule of M.

Examples and Remarks (4.3.2)

(1) Every critically compressible module is primely critically compressible
the converse is not true in general, for example: the Z-module Q is primely

critically compressible but not critically compressible.

(2)Z as a Z-module is primely critically compressible.

(3) Z,, as a Z-module is not primely critically compressible.
(4) Z,~ as a Z-module is not primely critically compressible.

(5) If R is an integral domain and K is the field of fraction of R, then(0) is the
only prime submodule of K as an R-module [29] so, K ia a primely critically

compressible R-module.
(6) Every simple module is primely critically compressible.

(7) If M is a fully prime module, then M is primely critically compressible if

and only if M is critically compressible.

Proposition (4.3.3)

Let M be a primely critically compressible module satisfying (*), then

every non-zero prime submodule of M is also primely critically compressible.
Proof:

Let N be a non-zero prime submodule of M. Then N is primely compressible
by (proposition 4.2.4).Let H be a prime submodule of N. Then H is prime in

104



Chapter Four Primely Compressible Modules and Primely Retractable Modules

M (since M satisfying (*)) and it can easily that N/H is prime in M/H Suppose
that there is a monomorphism, say a:N — N/H. But M is primely

compressible implies that there is a monomorphism, say f: M — N. Then the

composition ML NS N/H—l>M/H IS a monomorphism where i is the
inclusion homomorphism. So M is embedded in M/H which is a contradiction
since M is primely critically compressible. Hence N is primely critically

compressible.

Corollary (4.3.4)

A non-zero direct summand of a prime and primely critically

compressible module satisfying (*) is also primely critically compressible.
Now, we need to introduce the following concept:

Definition (4.3.5)

A prime partial endomorphism of a module M is a homomorphism from

a prime submodule of M into M.

Examples (4.3.6)

(1) If N is a prime submodule of a module M, then the inclusion

homomorphism i: N - M is a prime partial endomorphism of M.

(2) If N is a direct summand of a prime R-module M, then every

homomorphism from N into M is a prime partial endomorphism of M.

(3) If M is a fully prime module. Then every partial endomorphism of M is a

prime partial endomorphism of M.
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Proposition (4.3.7)

Let M be a fully stable module which satisfying (*). If M is primely
critically compressible, then every non-zero primely partial endomorphism of

M is a monomorphism.

Proof:

Let N be a non-zero prime submodule of M and f: N — M be a non-zero
partial endomorphism then % =~ f(N).Each of kerf and f(N) is prime in
M since M satisfying(*)and since M is primely compressible then there is a
monomorphism,say f: M — f(N).Then the  compositinM A f(N)
—2— N/kerf ——— M/kerf is an embedding of M into M /kerf which

IS a contradiction since M is primely critically compressible. Therefore

kerf = 0 and hence f is a monomorphism.

Proposition (4.3.8)

Let M be a prime module. If M is primely critically compressible, then M

Is indecomposable but not conversely.
Proof:

Let M be a primely critically compressible module. Suppose that M is
decomposable. Then M = A@B with A and B are non-zero proper prime
submodules of M. So, B ~ M /A. Let a: B - M /A be an isomorphism but M
is primely compressible, hence there is a monomorphism say f: M — B and

therefor af: M — M /A is a monomorphism, which is a contradiction,

For the converse Z as a Q-module is indecomposable but not primely

critically compressible.
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4.4 Primely Retractable Modules

In this section we introduce and study the concept primely retractable
module as a generalization of retractable module. Some characterizations of
such modules are given. Moreover, the relationships between this concept and

some other types of module are also investigated.

Definition (4.4.1)

An R-module M is called primely retractable if Hom(M,N) # 0 for

each non-zero prime submodule N of M.
A ring R is called primely retractable if the R-module R is primely retractable

Remarks and Examples (4.4.2)

(1) Every retractable module is primely retractable, but not conversely, for
example: Q as a Z-module is primely retractable since O is the only prime

submodule of Q, and Q is not retractable since Hom(Q,Z) = 0.

(2) If M is a fully prime module, then M is primely retractable if and only if M

is retractable.

(3) Every primely compressible module is primely retractable and the
converse need not be true in general. For example,Z,, as a Z-module is

primely retractable but not primely compressible.
(4) Every simple module is primely retractable but not conversely.

(5) Let M be an R-module. Then M is primely retractable R-module if and

only if M is primely retractable R /annM-module.
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(6) Let M be a torsion-free module such that [N: M] = 0 for each proper
submodule N of M. Then M is primely retractable if and only if M is purely

retractable.
Proof:
As in the proof of (Examples and Remarks 4.2.2,5) and (3).

(7) Let M be a prime faithful module such that [N: M] = 0 for each proper
submodule N of M. Then M is primely retractable if and only if M is a purely

retractable.
Proof:
As in the proof of (Examples and Remarks 4.2.2,6) and (3).

(8) Let M be a prime module such that annM = [N: M] for each proper
submodule N of M. Then M is primely retractable if and only if M is purely

retractable.
Proof:
As in the proof of (Examples and Remarks 4.2.2,7) and (3).

Proposition (4.4.3)

If M; and M, are two isomorphic modules, then M; is primely

retractable if and only if M, is so.
Proof:

As in the proof of proposition (4.2.3) and proof (1.2.3).
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Proposition (4.4.4)

Let M be an R-module satisfying (*) such that Endi (M) is a Boolean
ring. If M is primely retractable, then every submodule of M is also primely

retractable.
Proof:
As in the proof of proposition (1.2.7).

Corollary (4.4.5)

Let M be a module satisfying (*) such that End(M) is a Boolean ring. If
M is primely retractable, then every direct summand of M is also primely

retractable.

We are now going to investigate when a primely retractable module is

primely compressible.

Proposition (4.4.6)

Let M be a primely retractable quasi-Dedekind R-module, then M is a

primely compressible.
Proof:

Let N be a non-zero prime submodule of M and let f: M — N be a non-zero
homomorphism. Then fi: M — M is an endomorphism on M, where i: N - M
is the inclusion homomorphism. By hypothesis if is a monomorphism and

hence f is a monomorphism. Therefore M is primely compressible

Corollary (4.4.7)

Let M be a primely retractable quasi-Dedekind module. Then M is

generalized prime and primely uniform.
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Proof:

By corollary (4.4.6), M is primely compressible and according to proposition

(4.2.10) and (4.2.14), M is generalized prime and primely uniform.

5. Some Characterizations of Primely Retractable Module

As a characterization of primely retractable module we have the

following proposition

Proposition (4.5.1)

Let M be a module. Then M is primely retractable if and only if there
exists 0 # ¢ € End, (M) such that Im¢@ < N for each non-zero prime

submodule N of M.
Proof:

(=) Suppose that M is primely retractable. Let N be a non-zero prime
submodule of M. Then Hom ,(M,N) #+ 0. Let 0 # f: M — N be a non-zero
homomorphism. Let ¢ =if where i:N —- M Dbe the inclusion homo-

morphism, then ¢ € End, (M), ¢ # 0 and Imp =if (M) = f(M) € N.

(&) To prove M is primely retractable, let N be a non-zero prime submodule
of M. By hypothesis, there exists a non-zero endomorphism ¢: M — M such
that Imep = @ (M) € N, hence ¢: M — N is a non-zero homomorphism, thus

0 # ¢ € Hom(M, N), therefore M is primely retractable.

Proposition (4.5.2)

Let M be a module such that every cyclic submodule of a prime
submodule of M is prime in M. Then M is primely retractable if and only if
Hom(M,Rx) # 0 foreach 0 + x € M.
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Proof:
(=) Obvious.

(<) Let N be a non-zero prime submodule of M. Let 0 # x € N. By
hypothesis Rx is prime in M and Hom(M, Rx) # 0 and hence Hom(M, N) #

0, therefore M is primely retractable.

Corollary (4.5.3)

Let M be a module in which every cyclic submodule of M is prime. Then

M is primely retractable if and only if Hom(M, Rx) # 0 foreach 0 # x € M.

Corollary (4.5.4)

Every finitely presented prime module is primely retractable.
Proof:

Let M be a f.p. prime module. Let 0 #+ x € M, Then Rx is a direct summand
of M[44, ,Exercies 32,p.163]. Therefore Hom(M, Rx) # 0 and according to
(corollary (4.5.3)) M is primely retractable.

Corollary (4.5.5)

Every prime finitely generated projective module is primely retractable.
Proof:

Let M be a prime finitely generated projective module. Then M is finitely
presented [44,Exercies 1,p.159] and by (corollary (4.5.4)) M is primely
retractable.

In the following proposition we also give a sufficient condition for a

module to by primely retractable.
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Proposition (4.5.6)

Let M be a module such that every non-zero prime submodule of M

contains a non-zero direct summand of M. Then M is primely retractable.
Proof:

Let N be a non-zero prime submodule of M. By hypothesis there is 0 += A <
N and A is a direct summand of M. So, M = A@B forsome 0 #B <M .
Let p,: M — A be the projection homomorphism. Therefore p, € Hom(M, A)
and ip, € Hom(M, N) where i: A — N is the inclusion homomorphism. If
ipp =0, then 0=ip,(M)=p,(M)=A 1impliesA =0which is a

contradiction therefore Hom(M, N) # 0, hence M is primely retractable.

Now the following proposition gives a sufficient condition for a primely

retractable module to be retractable:

Proposition (4.5.7)

Let M be a prime module such that every non-zero submodule of M
contains a non-zero direct summand of M. if M is primely retractable, then M

IS retractable.
Proof:

Let 0 # N < M. By hypothesis there is a direct summand of M, say K and
K € N. Then K is prime in M [12,proposition 1.2,p.34] As M is primely
retractable implies Hom(M, K) # 0 and hence Hom(M, N) # 0. Therefore M

is retractable.
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Corollary (4.5.8)

Let M be a prime module such that every non-zero submodule of M
contains a non-zero direct summand of M. Then M is retractable if and only if

M is primely retractable.

Proposition (4.5.9)

Let M be a finitely generated multiplication R-module. then M is primely

retractable module.
Proof:

Let N be a non-zero prime submodule of M. Then N = IM for some non-zero
prime ideal | of R. [46]. But R is primely retractable by( Examples and
Remarks1.2.2,(1)) implies that Hom(R,I) #0. Let 0+ f:R—>1 be a
homomorphism. Let f(1) = a. Then a # 0. Define g:M - N by g(M) =
am for all m € M clearly, g is a well-defined homomorphism, g # 0 since M

is faithful. Therefore Hom(M, N) # 0 this is what we wanted.

Corollary (4.5.10)

Every faithful cyclic R-module is also primely retractable.

Now, we introduce the concept of primely epi-retractable module as

follows:

Definition (4.5.11)

A module M is called primely epi-retractable if every prime submodule
of M is a homomorphic image of M. That is, whenever N is a prime

submodule of M, then there exists an epimorphism from M onto N.
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Examples and Remarkes (4.5.12)

(1) Every primely epi-retractable module is primely retractable.
(2) Q as a Z-module is primely epi-retractable.

(3) Z,, as a Z-module is primely epi-retractable module.

(4) Every semisimple module is primely epi-retractable.

(5) If M is a fully prime module, then M is primely epi-retractable if and only

if M is epi-retractable.

Proposition (4.5.13)

Let M be a module satisfying (*). If M primely epi-retractable module,

then every non-zero prime submodule of M is also primely epi-retractable.
Proof:

Let M be a primely epi-retractable module and let N be a non-zero prime
submodule of M. let K be a non-zero prime submodule of N. Then K is prime

in M (since M satisfying (*)). Therefore there are epimorphisms f:M — N
and g: M - K. Define h: N = f(M) - K = g(M) by h(f(m)) = g(m) for
all m € M. Clearly h € Hom(N,K). h # 0, for if h = 0. Then h(f(M)) =
0 = g(M) = K which is a contradiction. Moreover h is an epimorphism,

since h(N) = h(f(M)) = g(M) = K. Thus N is primely epi-retractable.

Corollary (4.5.14)

A direct summand of a prime and primely epi-retractable module is also

primely epi-retractable.
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roposition (4.5.15)

Let M be a primely epi-retractable module. Then M/N is primely epi-

retractable.

Proof:

Let 0 = K /N be a prime submodule of M/N, where K is a proper submodule
of M containing N properly. K/N is prime in M /N implies that K is prime in
M [38,corollary 3.9]. Hence there is an epimorphism, say f: M — K (since M
is primely epi-retractable by hypothesis). f induces a homomorphism f: M/
N - K/N with f(m+ N) = f(m) + N for all m € M.f # 0, for if f =0,
then 0 = f(M/N)= f(M)+ N = K + N (since f is an epimorphism). Hence
K+ N =N implies K = N which is a contradiction. Therefore Hom(M/
N,K/N)# 0. Moreover f(M/N)=K/N. Thus M/N is primely epi-

retractable.

Lemma (4.5.16)

Let M; and M, be two R-module. If N;@N, is a prime submodule of M, ®M,.

Then N, is a prime submodule of M; and N, is prime submodule of M,.
Proof:

Let reR and x € M; such that rx € N;.Then r(x,0) € N;®N, So
either(x,0) € NygN, or r € [Ny®N,: M;®M,] (since N;@BN,is a prime
submodule of M;®M, by hypothesis). If (x,0) € N;®N, implies x € N, .If
r € [N;®N,: M;®M,]then r(m,;,m,) € Ny®N, for all m, € M, for all
m, € M,.Therefore rm, € N, for all m; € M;,So r € [N;: M,] and hence N;
Is prime submodule of M,.similarly we prove that N, is prime submodule of
M,.
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Proposition (4.5.17)

Let M;and M,be two primely epi-retractable modules such that

annM,; + annM, = R. Then M;@®M, is also primely epi-retractable.
Proof:

Let N be a non-zero prime submodule of M;@®M,. Then N = N;®N, for
some submodule N, of M; and N,of M,. By [31,proposition 4.2 ] and by
Lemma (4.5.16) N; is prime in M; and N, is prime in M,. Therefore there are
epimorphisms f:M; - N, and g:M, - N,. Define h: M;®M, — N by
h(m;,m,) = (f(my),g(m,)) for all (my,m,) € M;@M,. Clearly, h is a
non-zero homomorphism and h is an epimorphism. Therefore M;@®M, is

primely epi-retractable.

Corollary (4.5.18)

Let {M;}i~,be a finite family of primely epi-retractable modules such

that };i-, annM; = R. Then @}, M; is also primely epi-retractable.
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Future Works

For future work the following problems could be recommended

e

Purely prime modules and purely prime submodules.

Purely Epi-retractable modules.

Generalized prime modules and Generalized prime submodules.
Primely uniform modules.

Primely Epi-retractable module.
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