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Abstract 

Let R be a commutative ring with unity, M and N be (left) unitary R-

modules. Let 𝐻𝑜𝑚𝑅(𝑀,𝑁) be the set of all R-homomorphisms from M to N. 

it is well-known that the properties of the R-module 𝐻𝑜𝑚𝑅(𝑀,𝑁) are 

determined by the properties of R, M and N, and also some of the properties 

of M, N and R are determined by those of 𝐻𝑜𝑚𝑅(𝑀,𝑁) so for this reason , the 

study of 𝐻𝑜𝑚𝑅(𝑀,𝑁) attracted the attention of many researchers. Some 

special studies were appeared for 𝐻𝑜𝑚𝑅(𝑀,𝑁) in case N is a non-zero 

submodule of M. by using the restriction that 𝐻𝑜𝑚𝑅(𝑀,𝑁) ≠0 whenever N is 

a non-zero submodule of M, such module M is called retractable module. 

While when every non-zero submodule of M contains a copy of M, that means 

there exists a monomorphism in 𝐻𝑜𝑚𝑅(𝑀,𝑁) whenever N is a non-zero 

submodule of M, M is called compressible module in this case. Clearly the 

class of compressible modules is contained properly in the class of retractable 

modules .Many studies about these notions were given. 

Also some generalizations of these concepts were appeared such as 

essentially retractable modules, epi-retractable modules, small compressible 

and small retractable modules. 

 In this work, we shall give detailed study about small compressible 

modules and small retractable modules. Moreover we shall present other 

generalizations for compressible and retractable modules, namely, purely 

compressible modules, purely retractable modules, primely compressible 

modules and primely retractable modules. 
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Introduction 

Let R be a commutative ring with unity, M and N be (left) R-modules.             

It is well-known that the R-module 𝐻𝑜𝑚𝑅(𝑀,𝑁) which consists of all              

R-homomorphisms from M to N plays a central role in the study of many 

types of modules. By using the restriction that N is a non-zero submodule of 

M, some researchers were interested in studying modules for which 

𝐻𝑜𝑚𝑅(𝑀,𝑁) ≠ 0, such modules are called retractable modules. While in the 

case that 𝐻𝑜𝑚𝑅(𝑀,𝑁) contains a monomorphism whenever N is a non-zero 

submodule of M, equivalently, every non-zero submodule of M contains a 

copy of M, such modules are called compressible modules. The concept 

compressible module was first used by J. M. Zelmanowitz in (1976) while the 

notion retractable module was first used by S. M. Khuri in (1979) since have 

many extensive studies were appeared about these two concepts, some of 

them were represent generalization for compressible and retractable modules, 

for instance, essentially retractable modules, Epi-retractable modules, see [1], 

[5], [7], [8],  [20], [21],[24],[25],[26],[35], [36],[39], [41] and [45].One of the 

generalizations of compressible and retractable modules was small 

compressible and small retractable modules which were introduced by H. K. 

Marhoon in (2014), we shall study these two generalizations in some details 

in chapter two of this thesis. By considering special classes of submodules of 

M, namely, pure submodules and prime submodules, we shall present and 

study the concepts of purely compressible modules, purely retractable 

modules, primely compressible modules and primely retractable modules. 

The thesis contains four chapters. The first chapter represents 

preliminaries concerning compressible and retractable modules; this chapter 

consists of three sections. In section one, we present the notion of 

compressible modules with some of their known basic properties. In section 
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two, we recall retractable modules with many properties of such modules. In 

section three, we gave many characterizations of retractable modules.  

The following are some results of chapter one: 

 (1) Let M be an R-module such that 𝐸𝑛𝑑
R
(𝑀) is a Boolean ring. If 𝑀 is a 

retractable R-module, then every non-zero submodule of 𝑀 is also retractable, 

see Proposition (1.2.7). 

(2) Let 𝑀 be a torsion-free R-module. Then 𝑀 is retractable if and only if 𝑀 

is dualizable, see Proposition (1.3.4). 

(3) Let R be an integral domain. Then every finitely generated uniform             

R-module is retractable, see Proposition (1.3.12). 

In chapter two, we shall give a detailed study for small compressible 

and small retractable modules, the chapter contains three sections. In the first 

section, we investigate the basic properties of small compressible modules. In 

the second section we shall concerned with the basic properties of small 

retractable modules. Some characterizations of small retractable modules are 

given in the third section. Moreover we introduce the concept of small epi- 

retractable modules with some of its basic properties. 

Among other results in chapter two are the following: 

(1) Let N be a proper submodule of an R-module M. If M/N is small 

compressible, then N is small prime submodule of M. see Theorem (2.1.17). 

(2)  Let M be an R-module in which every cyclic submodule of M is small in 

M. Let N be a small prime submodule of M such that [𝑁:𝑀] ⊉ [𝐾:𝑀] for 

each submodule K of M containing N properly. Then M/N is  small 

compressible. see Theorem (2.1.18). 
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(3) Let M be a fully invariant R-module such that 𝑓(𝑀) is a direct summand 

of M for each 𝑓 ∈ 𝐸𝑛𝑑
R
(𝑀). Then M is small retractable if and only if there 

exists 0 ≠ 𝑓 ∈ 𝐸𝑛𝑑
R
(𝑀) such that 𝑓(𝑀) is small retractable, see Proposition 

(2.3.3). 

(4) If R is a V-ring (or a von-Neumann regular ring), then every small 

projective R-module is small retractable, see Proposition (2.3.7). 

Purely compressible and purely retractable modules are introduced and 

investigated in chapter three of this thesis. The chapter consists of four 

sections. Section one is devoted to the notion of purely compressible modules, 

we give a detailed study for these modules. We introduce a special type of 

purely compressible modules, in section two, namely purely critically 

compressible modules. The concept of purely retractable modules is presented 

and studied in section three; Finally, in section four, some properties and 

characterizations for purely retractable modules are given. Moreover we 

introduce the concept of purely epi- retractable modules with some of its basic 

properties. 

We recall here some of the results of chapter three: 

(1(Let M be a module having PSP and N be a proper submodule of an R-

module M. If M/N is purely compressible, then N is purely prime submodule 

of M. see Proposition (3.1.26)  

(2) Let M be a module such that every cyclic submodule of M is pure in M. If 

N is a proper purely prime submodule of M such that  [𝑁:𝑀] ⊉ [𝐾:𝑀] for all 

submodules K of M containing N properly. Then M/N is purely compressible. 

see Proposition (3.1.27). 
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(3) Let M be a faithful finitely generated multiplication R-module. Then M is 

purely compressible if and only if for each non-zero pure ideal I of R, 

𝑎𝑛𝑛𝑀(𝐼) = 0, see Theorem (3.1.37). 

(4) Let M be a faithful finitely generated multiplication R-module. Then M is 

purely compressible if and only if R is purely compressible ring, see 

Proposition (3.1.41). 

(5) Let R be a ring in which every principle ideal is pure. Let M be a faithful 

finitely generated multiplication R-module such that every submodule of a 

pure submodule is also pure. Then the following statements are equivalent: 

(i) M is purely compressible. 

(ii) M is isomorphic to an R-module of the form A/P for some purely prime 

ideal P of R and an ideal A of R containing P properly. 

(iii) M is isomorphic to a non-zero submodule of a finitely generated purely 

uniform, purely prime R-module., see Theorem (3.1.48) 

(6) If N is a proper primely pure submodule of a module M such that 

[𝑁:𝑀] ⊉ [𝐾:𝑀] for all submodules K of M containing N properly, then 𝑀/𝑁 

is purely retractable, see Proposition (3.3.6) 

(7) Every finitely presented module is purely retractable, see Corollary 

(3.4.6). 

(8) Let M be a module such that every non-zero pure submodule of M 

contains a non-zero direct summand of M. Then M is purely retractable, see 

Proposition (3.4.8). 

In the last chapter of this thesis, we introduce and study another 

characterization of compressible and retractable modules which are primely 

compressible and primely retractable modules, This chapter included five 
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sections. In section one we introduce the concepts of generalized prime 

modules and generalized prime submodules as generalization for prime 

module and prime submodule. We establish some of their properties which 

are needed in the next sections of this chapter. In the second section, we give 

the concept primely compressible modules with some examples and basic 

properties of such modules are investigated. Section three is devoted for the 

concept of primely critically compressible modules. while section four 

contains the definition and many properties of primely retractable modules. 

Finally, in section five, some properties and characterizations for primely 

retractable modules are given. Moreover the notion of primely epi-retractable 

modules is presented with establishing some of its properties. 

Among the results of chapter four are the following: 

(1) Every primely compressible module is primely uniform, see Proposition 

(4.2.14) 

(2) Let M be a faithful finitely generated multiplication R-module. If M is 

primely compressible, then for each non-zero prime ideal I of R,𝑎𝑛𝑛𝑀(𝐼) =

0, see Theorem (4.2.15). 

(3) Let R be a ring such that every non-zero principal ideal of R is prime.  If 

M is a faithful finitely generated multiplication and 𝑎𝑛𝑛𝑀(𝐼) = 0 for each 

non-zero prime ideal I of R, then M is primely compressible, see Theorem 

(4.2.16). 

(4) Let M be a faithful finitely generated multiplication R-module then M is 

primely compressible if and only if M is generalized prime, see Corollary 

(4.2.23) 

(5) Let R be a ring in which every principal ideal is prime. Let M be a Z-

regular faithful finitely generated multiplication R-module which satisfy 
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condition (*) such that a non-zero cyclic submodule of a direct summand of 

M is prime submodule of M. Then the following statements are equivalent: 

(i) M is primely compressible. 

(ii) M is isomorphic to an R-module of the form A/P for some  generalized 

prime ideal P of R and an ideal A of R containing P properly. 

(iii) M is isomorphic to a non-zero submodule of a finitely generated primely 

uniform, generalized prime R-module., see Theorem (4.2.27). 

(6) Let M be a prime module. If M is primely critically compressible, then M 

is indecomposable but not conversely, see Proposition (4.3.8). 

(7) Let M be a primely retractable quasi-Dedekind module. Then M is 

generalized prime and primely uniform,see Proposition (4.4.7). 

(8) Every prime finitely generated projective module is primely retractable, 

see Corollary (4.5.5) 

(9) Let M be a module such that every non-zero prime submodule of M 

contains a non-zero direct summand of M. Then M is primely retractable, see 

Proposition (4.5.6). 

(10) Let M be a prime module such that every non-zero submodule of M 

contains a non-zero direct summand of M. if M is primely retractable, then M 

is retractable, see Proposition (4.5.7). 

(11) Let M be a module satisfying (*). If M primely epi-retractable module, 

then every non-zero prime submodule of M is also primely epi-retractable, see 

Proposition (4.5.13). 

Where a condition (*) means:  
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Let M be a module satisfying ∀𝐾 ≤ 𝑁 ≤ 𝑀 if N is a prime submodule of M 

and K is a prime submodule of N, then K is a prime submodule of M. 
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Chapter One 

Compressible and Retractable Modules 

Introduction 

This chapter represents a prelusion for the next chapters in our work. The 

chapter contains three sections. In the first section, we present the concept of 

compressible modules with some of its known basic properties and some 

related concepts which shall be needed later. The second section is devoted to 

the concept of retractable modules with many examples of such modules and 

many of its properties. In section three we give many characterizations of 

retractable modules. 

 

1.1 Compressible Modules 

We introduce in this section the concept of compressible modules with 

some of its basic properties. Also we recall the definitions of some concepts 

that are related to compressible modules. 

"Definition (1.1.1)[24] 

An R-module 𝑀 is called compressible if 𝑀 embedded in each of its 

non-zero submodule. That is for each non-zero submodule  𝑁 of  𝑀, there 

exists a monomorphism 𝑓:𝑀 → 𝑁". 

A ring R is compressible if the R-module R is compressible.  

Examples and Remarks (1.1.2) 

(1) Z as Z-module is compressible.  
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 (2) "A ring R is compressible if and only if R is an integral domain" [1]. 

Proof:  

(⇒) Let 𝑎, 𝑏 ∈ 𝑅. Suppose that 𝑎𝑏 = 0 if 𝑎 ≠ 0, and 𝐼 = (𝑎). Then 𝐼 is a 

non-zero ideal of R and since R is compressible then there exists a 

monomorphism 𝑓: 𝑅 → 𝐼 .Let 𝑓(1) = 𝑟𝑎 for some 0 ≠ 𝑟 ∈ 𝑅. Then 𝑓(𝑏) =

𝑏𝑓(1) = 𝑏(𝑟𝑎) = 𝑟(𝑎𝑏) = 0, therefore 𝑏 = 0. Hance R is an integral 

domain. 

(⇐) If R is an integral domain. let I be a non-zero ideal of R. Then there exists 

a non-zero element x in I. Define 𝑓: 𝑅 → 𝐼 by 𝑓(𝑟) = 𝑟𝑥 for all 𝑟 ∈ 𝑅. 

Clearly f is a homomorphism and f is a monomorphism since R is an integral 

domain. Hence R is compressible. 

(3) 𝑍𝑛as a Z-module is not compressible module  ∀𝑛 ∈ 𝑍+, 𝑛 > 1. 

(4) Q as a Z-module is not compressible since 𝐻𝑜𝑚𝑍(𝑄, 𝑍) = 0.  

(5) Every simple R-module is compressible. 

(6) Every non-zero submodule (direct summand)  of a compressible module is 

also compressible.  

(7)A homomorphic image of a compressible module need not be 

compressible. See examples (1) and (3). 

(8) A direct sum of compressible modules need not be compressible in 

general. For instance, Z is a compressible Z-module but 𝑍⨁𝑍 is not 

compressible Z-module. 
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Proof: 

Suppose that there exists 𝑓: 𝑍⨁𝑍 → 𝑍⨁0 is a monomorphism. Then if 

(𝑎1, 𝑏1), (𝑎1, 𝑏2) ∈ 𝑍⨁𝑍 with 𝑏1 ≠ 𝑏2, implies (𝑎1, 𝑏1) ≠ (𝑎1, 𝑏2) but 

𝑓(𝑎1, 𝑏1) = 𝑓(𝑎1, 𝑏2) = (𝑎1, 0) which is a contradiction. 

   The following concepts are needed in the next section. 

"Definition (1.1.3)[17] 

       A proper ideal I of a ring R is called a prime ideal if  ∀𝑎, 𝑏 ∈ 𝑅 with 

𝑎𝑏 ∈ 𝐼 then 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼".  

"Definition (1.1.4)[20] 

      An R-module M  is called prime if 𝑎𝑛𝑛
R
(𝑀) = 𝑎𝑛𝑛

R
(𝑁) for each non-

zero submodule N of M." 

"Definition (1.1.5)[15]  

      A proper submodule N of an R-module M is called prime whenever 

Nrx   for Rr   and Mx  , then either Nx   or  MNr
R

: , where 

   NrMRrMN
R

 :: ." 

"Definition (1.1.6)[27] 

      A submodule N  of an R-module M  is called essential if for every non-

zero submodule K of M,  𝑁 ∩ 𝐾 ≠ (0)." 

"Definition (1.1.7)[27] 

      An R-module M  is called uniform if M 0   and every submodule of M is 

essential in M." 
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   We recall in the following proposition, some properties of compressible 

modules, from [35], which will be needed in our work. 

"Proposition (1.1.8) [35, p.7, p.8] 

(1) Every compressible module is prime. 

(2) A finitely generated module M is compressible if and only if M is uniform 

and prime module. 

(3) Let M be an R-module. Then the following statements are equivalent: 

(i) M is compressible. 

(ii) M is isomorphic to an R-module of the form A/P for some prime ideal P of 

R and an ideal A of R containing P properly. 

(iii) M is isomorphic to a non-zero submodule of a finitely generated uniform 

prime R-module". 

"Definition (1.1.9)[24] 

      A compressible module M is called critically compressible if M cannot be 

embedded in any proper factor module M/N with N is a non-zero submodule 

of M". 

Examples and Remarks (1.1.10) 

(1) The Z-module Z is critically compressible. 

(2) Every simple module is critically compressible. 

(3) Q as a Z-module is not critically compressible. 

(4) According to [26] the compressible and critically compressible modules 

are equivalent if R is a commutative ring. 
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   If R is any ring we recall some of the following results: 

Proposition (1.1.11) 

      A non-zero submodule of a critically compressible module is also a 

critically compressible.  

Proof: 

 Let M be a critically compressible module and 0 ≠ 𝑁 ≤ 𝑀. Then N is 

compressible by Definition (1.1.9) and (Examples and Remarks (1.1.2.(6)). 

Let 0 ≠ 𝐻 ≤ 𝑁. Suppose that there exists a monomorphism, say 𝛼:𝑁 → 𝑁/

𝐻, and let 𝑓:𝑀 → 𝑁 be a monomorphism. Hence the composition 

𝑀
𝑓
→𝑁

𝛼
→𝑁/𝐻

𝑖
→𝑀/𝐻 gives an embedding of M into M/H which is a 

contradiction. Therefore N is critically compressible. 

" Definition (1.1.12)[8] 

      A partial endomorphism of an R-module M is a homomorphism from a 

submodule of 𝑀 into M." 

"Proposition (1.1.13)[26, proposition 1.1] 

      The following conditions are equivalent for a compressible module M 

(1)  M is critically compressible. 

(2) Every non-zero partial endomorphism of M is a monomorphism." 
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1.2 Retractable Modules 

We present in this section the concept of retractable modules with many 

examples and we investigate some of its properties.  

"Definition (1.2.1)[41] 

 An R-module M is called retractable if 𝐻𝑜𝑚(𝑀,𝑁) ≠ 0 for each non-zero 

submodule N of M." 

"A ring R is called retractable if the R-module R is retractable." 

Examples and Remarks (1.2.2) 

(1)Every commutative ring with identity is a retractable. 

Proof: 

Let R be a commutative  ring with identity and let I be a non-zero ideal of R. 

let 0 ≠ 𝑎 ∈ 𝐼. Define 𝑓: 𝑅 ⟶ 𝐼 by 𝑓(𝑟) = 𝑟𝑎 ∀𝑟 ∈ 𝑅. Clearly f is a well-

defined R-homomorphism. If 𝑓 = 0,Then 𝑓(𝑟) = 0 for all 𝑟 ∈ 𝑅. So, 0 =

𝑓(1) = 1. 𝑎 = 0 which is a contradiction. Hence 𝐻𝑜𝑚(𝑅, 𝐼) ≠ 0. 

(2) 𝑍𝑛 is a retractable Z-module for all positive integer 𝑛 > 1. 

(3) Every compressible module is retractable but not conversely, for instance 

Zn as a Z-module is retractable but not compressible. 

(4) Every integral domain is a retractable ring by (Examples and Remarks 

1.1.2,(2)) and (3). However there is a retractable ring which is not an integral 

domain. For example 𝑍4 is a retractable ring but is not an integral domain.  

(5) Q as a Z-module is not retractable since 𝐻𝑜𝑚𝑍(𝑄, 𝑍) = 0. 

(6) Every semisimple (simple) module is retractable. 
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(7) If R is a semisimple ring, then every R-module is retractable. 

(8) Let M be an R-module. Then M is a retractable R-module if and only if M 

is a retractable 𝑅/𝑎𝑛𝑛(𝑀)-module. 

Proof:  

This  follows from the fact that: N is an R-submodule of M if and only if N is 

an 𝑅̅-submodule of M and 𝐻𝑜𝑚𝑅(𝑀,𝑁) = 𝐻𝑜𝑚𝑅̅(𝑀,𝑁), 𝑅̅ = 𝑅 𝑎𝑛𝑛(𝑀)⁄ . 

(9) "For any R-module M,  𝑅⨁𝑀  is a retractable R-module."[39,p.71].In 

particular the Z-module 𝑍 ⊕𝑄 is retractable. 

(10) "For any proper ideal I of a ring R,  the R-module 𝑅/𝐼 is retractable." 

[36,p.306] 

(11) "𝑍𝑃∞ as a Z-module is not retractable"[39,p.71]. 

)12) "Direct sum of any family of retractable modules is retractable." 

[36,proposition1.4,p.307]. In particular "An arbitrary direct sum of copies of 

M is retractable if and only if M is retractable." [42,proposition2.10,p.686]. 

            In the following proposition we show that retractability is preserved 

under isomorphism. 

Proposition (1.2.3) 

      Let 𝑀1 and 𝑀2 be two isomorphic R-modules. Then 𝑀1is retractable if 

and only if 𝑀2 is retractable. 

Proof: 

 Assume that 𝑀1 is retractable and let   𝜑 ∶ 𝑀
1
→  𝑀

2
 be an isomorphism. Let 

0 ≠ 𝑁 ≤ 𝑀
2
. Then 0 ≠ 𝜑−1(𝑁) ≤ 𝑀

1
. Put  𝐾 = 𝜑−1(𝑁). Let 𝑓:𝑀

1
→ 𝐾 be 
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a non-zero homomorphism and let 𝑔
K

 then 𝑔:𝐾 → 𝑀
2
 is a 

homomorphism and 𝑔(𝑘) = 𝜑(𝜑−1(𝑁)) = 𝑁, hence 𝑔:𝐾 → 𝑁 is a 

homomorphism. Now, we have the composition 𝑀
2

𝜑−1

→  𝑀
1

𝑓
→𝐾

𝑔
→𝑁. Let 

ℎ = 𝑔𝑓𝜑−1, then  ℎ ∈ 𝐻𝑜𝑚(𝑀
2
, 𝑁).If ℎ = 0,then 0 = 𝑔(𝑓 (𝜑−1(𝑀

2
)) =

𝑔(𝑓(𝑀
1
))implies that  𝑓(𝑀

1
) ⊆ 𝐾𝑒𝑟𝑔 ⊆ 𝐾𝑒𝑟𝜑 = 0.Thus 𝑓(𝑀

1
) = 0, which 

is a contradiction. Therefore 𝐻𝑜𝑚𝑅  (𝑀 2
, 𝑁) ≠ 0 which is what we wanted. 

     In order to give other applications of proposition (1.2.3) we need to recall: 

"An R-module is called  free  if it has a basis." [18]. 

Corollary (1.2.4) 

      If R is an integral domain, then every free R-module is retractable. 

Proof:  

Let M be a free R-module with basis {𝑋𝜆: 𝜆 ∈ 𝛬}. Then 𝑀 ≃ ⨁𝜆∈Λ 𝑅𝜆  where 

𝑅𝜆 ≃ 𝑅  𝜆 ∈ 𝛬 by [18,lemma 4.4.3,p.89]. By (Examples and 

Remarks1.2.2,(4)) R is retractable and hence   ⨁𝜆∈Λ𝑅𝜆   is retractable by 

(Examples and Remarks1.2.2,(12)). Therefore M is retractable by proposition 

(1.2.3). 

"Remark (1.2.5) 

      A submodule of a retractable module is not necessary retractable in 

general."[36,p.306]. 

Consider the following example, which is recalled in [36,p.306] without any 

details, we explain it as follows: 
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Example (1.2.6) 

Let 𝑆 = {(
𝑎 𝑏
0 𝑐

) : 𝑎, 𝑏, 𝑐 ∈ 𝑅} where R be a commutative ring with 

identity.  𝑆 is a ring with identity with respect to addition and multiplication 

of matrices. The non-zero ideals of 𝑆 are:    

 𝐼1 = 𝑆, 𝐼2 = {(
𝑎 𝑏
0 0

) : 𝑎, 𝑏 ∈ 𝑅} , 𝐼3 = {(
𝑎 0
0 𝑐

) : 𝑎, 𝑐 ∈ 𝑅} , 𝐼4 =

{(
𝑎 0
0 0

) : 𝑎 ∈ 𝑅}   𝑜𝑟 𝐼5 = {(
0 0
0 𝑐

) : 𝑐 ∈ 𝑅} .  

In each of these cases one can easily define a non-zero homomorphism from 

𝑆 to  𝐼, which means that 𝑆 is a retractable S-module. 

Now, let 𝐼 = {(
𝑎 𝑏
0 0

) : 𝑎, 𝑏 ∈ 𝑅}.we claim that 𝐼 is not a retractable 

submodule of  𝑆. 

Note that 𝐼 = (
1 0
0 0

) 𝑆 and (
1 0
0 0

) is an idempotent element and hence 𝐼 is 

an idempotent ideal. 

Let  𝐽 = {(
0 𝑏
0 0

) : 𝑏 ∈ 𝑅}. J is a subideal of 𝐼 and  𝐽𝐼 = 0.  Suppose that there 

is a homomorphism, say 𝑓: 𝐼 → 𝐽.  

Then 𝑓(𝐼) = 𝑓(𝐼2) = 𝑓(𝐼)𝐼 ⊆ 𝐽𝐼 = 0 and hence 𝑓(𝐼) = 0, that means  𝑓 = 0 

,therefore 𝐻𝑜𝑚(𝐼, 𝐽) = 0.Hence 𝐼 is not retractable. 

                  In the following proposition we prove that under certain condition, the 

submodule of a retractable module is also retractable. 

First," recall that a ring is called Boolean ring in case each of its element is an 

idempotent" [17] 
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Proposition (1.2.7) 

      Let M be an R-module such that 𝐸𝑛𝑑
R
(𝑀) is a Boolean ring. If 𝑀 is a 

retractable R-module, then every non-zero submodule of 𝑀 is also retractable. 

Proof:  

Let 0 ≠ 𝑁 ≤ 𝑀 and 0 ≠ 𝐾 ≤ 𝑁. Then 𝐻𝑜𝑚
R
(𝑀, 𝐾) ≠ 0. Let 𝑓:𝑀 → 𝐾 be a 

non-zero homomorphism. Hence 𝑓𝑖: 𝑁 → 𝐾 is a homomorphism where 

𝑖: 𝑁 → 𝑀 is the inclusion homomorphism. We claim that 𝑓𝑖 ≠ 0, Suppose 

that 𝑓𝑖 = 0, then (𝑓𝑖)(𝑁) = 0 = 𝑓(𝑁),so 𝑁 ⊆ 𝐾𝑒𝑟𝑓 and hence  𝐾 ⊆ 𝐾𝑒𝑟𝑓, 

which implies that 𝑓(𝑀) ⊆ 𝐾𝑒𝑟𝑓 therefore 𝑓(𝑓(𝑀)) = 0. Let 𝑗: 𝐾 → 𝑀 be 

the inclusion homomorphism. Then 𝑗𝑓 ∈ 𝐸𝑛𝑑
R
(𝑀)and  𝑗𝑓(𝑀) =

𝑓(𝑀) 𝑏𝑢𝑡  (𝑗𝑓)2(𝑀) = (𝑗𝑓)(𝑗𝑓)(𝑀) = 𝑗𝑓(𝑓(𝑀)) = 𝑗(𝑓(𝑓(𝑀)) = 𝑗(0) =

0, and (𝑗𝑓)2(𝑀) = (𝑗𝑓)(𝑀) since 𝐸𝑛𝑑
R
(𝑀) is a Boolean ring.Hence   

𝑗(𝑓(𝑀)) = 𝑓(𝑀) = 0. Therefore 𝑓 = 0 which is a contradiction, thus 𝑓𝑖 ≠ 0, 

therefore 𝑁 is retractable. 

      Now we recall a special case for a submodule of a retractable module is 

also retractable. 

Proposition (1.2.8) 

      If R is an integral domain, then every non-zero ideal of R is also 

retractable. 

Proof:  

Let I be a non-zero ideal of R and let J be a non-zero subideal of I. Then 𝐽2 ≠

0 (since R is an integral domain). But  𝐽2 ⊆ 𝐽𝐼. So 𝐽𝐼 ≠ 0. Therefore there 
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exists 𝑟 ∈  𝐽 such that 𝐼 ≠ 0 . Define 𝑓: 𝐼 → 𝐽 by 𝑓(𝑎) = 𝑟𝑎 for all 𝑎 ∈  𝐼. 

Cleary, 𝑓 is an R-homomorphism and 𝑓 ≠ 0, hence I is retractable. 

To give an application of proposition (1.2.8), we recall that: 

"An R-module M is quasi-Dedekind if and only if every non-zero 𝑓 ∈ 𝐸𝑛𝑑
R

(𝑀) is a monomorphism." [11,theorem 1.5,p.26].  

"An R-module 𝑀 is called dualizable, if 𝐻𝑜𝑚𝑅(𝑀, 𝑅) ≠ 0." [18]. 

Corollary (1.2.9) 

      Let M be a faithful quasi-Dedekind dualizable R-module. Then M is 

retractable. 

Proof:  

M being faithful quasi-Dedekind dualizable gives R is an integral domain and 

M is isomorphic to an ideal of R, [11.corollary 1.8 and corollary 2.3]. 

Therefore 𝑀 ≃ 𝐼 for some ideal I of R. By proposition (1.2.8), I is retractable 

and hence M is retractable by proposition (1.2.3). 

Note (1.2.10) 

The condition M is dualizable can not be dropped in corollary (1.2.9), for 

example Q as a Z-module is faithful and quasi-Dedekind but not dualizable 

and Q is not retractable. 

Remark (1.2.11) 

      A direct summand of a retractable module need not be retractable in 

general. 
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For instance, in example (1.2.6), if we take 𝐼 = {(
𝑎 𝑏
0 0

) : 𝑎, 𝑏 ∈ 𝑅} and 𝐾 =

{(
0 0
0 𝑐

) : 𝑐 ∈ 𝑅}, it is clear that 𝑆 = 𝐼⨁𝐾, 𝐼 is not retractable while  𝑆 is 

retractable. 

As another example: 𝑍⨁𝑄 is a retractable Z-module by (Examples and 

Remarks1.2.2,(9)), however 𝑄 is not retractable Z-module. 

Remark (1.2.12) 

        An epimorphic image (a quotient module) of a retractable module is not 

necessary retractable in general. As it is shown in the following: 

 In example (1.2.6), 𝑆 is a retractable S-module and 𝐼 = {(
𝑎 𝑏
0 0

) : 𝑎, 𝑏 ∈ 𝑅} is 

not a retractable submodule of 𝑆. Define 𝑓: 𝑆 → 𝐼 by 𝑓 (
𝑎 𝑏
0 𝑐

) = (
𝑎 𝑏
0 0

) for 

all (
𝑎 𝑏
0 𝑐

) ∈ 𝑆. It can be easily checked that 𝑓 is an epimorphism. On the 

other hand 𝐾𝑒𝑟𝑓 = {(
0 0
0 𝑐

) : 𝑐 ∈ 𝑅}  and  𝑆/𝐾𝑒𝑟𝑓 ⋍ 𝐼 . Hence 𝑆/𝐾𝑒𝑟𝑓 is 

not retractable by proposition (1.2.3). 

        As it was mentioned in (Examples and Remarks1.2.2,(3)) that 

compressible module is retractable and the converse need not be true in 

general, we recall in the following some partial converse: 

"Proposition (1.2.13)[45,proposition 1.2,p.3] 

Suppose that M is a retractable R-module. If every non-zero 𝑓 ∈ 𝐸𝑛𝑑(𝑀) is a 

monomorphism, then every non-zero element of 𝐻𝑜𝑚𝑅(𝑀,𝑁) is a 

monomorphism, for any non-zero submodule N of M. In particular, M is 

compressible.  
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"Proposition (1.2.14)[21,proposition 1.2.10,p.33] 

      A retractable quasi-Dedekind module is compressible." 

Proposition (1.2.15) 

      If M is a retractable quasi-Dedekind R-module. Then M is isomorphic to 

an R-module of the form A/P for some prime ideal P of R and an ideal A of R 

containing P properly. 

Proof: 

 By (1.2.14) M is compressible and by (1.1.8) the result follows. 

"Proposition (1.2.16)[45,proposition 1.3,p.3] 

      Let M be a retractable R-module. Then the following statements are 

equivalent: 

(1) M is critically compressible. 

(2)Every non-zero partial endomorphism of M is monomorphism." 

"Definition (1.2.17)[27] 

     Let M be an R-module, put 𝑍(𝑀) = {𝑚 ∈ 𝑀: 𝑎𝑛𝑛𝑅(𝑚) ≤ e
𝑅}, 𝑍(𝑀) is a 

submodule of M it is called the singular submodule of M, M is called singular 

if 𝑍(𝑀) = 𝑀 and M is called nonsingular if  𝑍(𝑀) = 0." 

"Proposition (1.2.18)[45,proposition 1.7,p.4] 

      A retractable nonsingular uniform module is critically compressible." 
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1.3 Some Characterizations of Retractable Modules  

     We present in this section some characterizations of retractable modules. 

Also we discuss some necessary or sufficient conditions for a module to be 

retractable. 

"Proposition (1.3.1)[42,p.685] 

      An R-module M is retractable if and only if there exists 0 ≠ 𝜑 ∈ 𝐸𝑛𝑑
R

(𝑀) such that 𝐼𝑚 𝜑 ⊆ 𝑁 for each non-zero submodule N of M." 

Proof:  

(⇒) Suppose that M is retractable. Let 0 ≠ 𝑁 ≤ 𝑀. Then 𝐻𝑜𝑚𝑅(𝑀,𝑁) ≠ 0. 

Let 𝑓:𝑀 → 𝑁 be a non-zero homomorphism.let 𝜑 = 𝑖𝑓 where  𝑖: 𝑁 → 𝑀 be 

the inclusion homomorphism, so  𝜑 ∈  𝐸𝑛𝑑
R
(𝑀) and 𝜑 ≠ 0  since 𝑓 ≠0 and i 

is a monomorphism. Clearly, 𝐼𝑚 𝜑 = 𝑓(𝑀) ⊆ 𝑁.  

(⇐) To prove M is retractable. Let 0 ≠ 𝑁 ≤ 𝑀. By hypothesis there exists a 

non-zero homomorphism 𝜑:𝑀 → 𝑀 and 𝜑(𝑀) ⊆ 𝑁. Therefore  𝜑: 𝑀 → 𝑁 is 

a non-zero homomorphism, that is 𝐻𝑜𝑚𝑅(𝑀,𝑁) ≠ 0 hence M is retractable. 

    Now, we give the following characterization 

Proposition (1.3.2) 

      An R-module 𝑀 is retractable if and only if  𝐻𝑜𝑚
R
(𝑀, 𝑅𝑥) ≠ 0  for all 

0 ≠ 𝑥 ∈ 𝑀.  

Proof: 

 (⇒) Suppose that M is retractable and let 0 ≠ 𝑥 ∈ 𝑀. Put 𝑁 = (𝑥) = 𝑅𝑥 

Then 0 ≠ 𝑁 ≤ 𝑀 and 𝐻𝑜𝑚𝑅(𝑀,𝑁) ≠ 0. Hence  𝐻𝑜𝑚𝑅(𝑀, 𝑅𝑥) ≠ 0.  



 Chapter One                                                                                       Compressible and Retractable Modules 

  

   15 
 

(⇐) To prove M is retractable. Let 0 ≠ 𝑁 ≤ 𝑀  and let 0 ≠ 𝑥 ∈ 𝑁, by 

hypothesis, 𝐻𝑜𝑚(𝑀,𝑅𝑥) ≠ 0. Let 𝑓:𝑀 → 𝑅𝑥 be a non-zero homomorphism. 

Then 𝑖𝑓:𝑀 → 𝑁 is a homomorphism where 𝑖: 𝑅𝑥 → 𝑁 is the inclusion 

homomorphism, clearly 𝑖𝑓 ≠ 0 since 𝑓 ≠ 0 and i is a monomorphism. Hence 

𝐻𝑜𝑚𝑅(𝑀,𝑁) ≠ 0 this completes the proof. 

"Let R be an integral domain and M be an R-module. Let 𝑇(𝑀) = {𝑚 ∈

𝑀: 𝑟𝑚 = 0 for some 0 ≠ 𝑟 ∈ 𝑅}.𝑇(𝑀) = 𝑀 is a submodule of M, M is called 

a torsion module if 𝑇(𝑀) = 𝑀, and M is called torsion-free if 𝑇(𝑀) =

0. "[18] 

  Proposition (1.3.3) 

      If 𝑀 is a torsion-free cyclic R-module, then 𝑀 is retractable. 

Proof: 

 Let 𝑀 = 𝑅𝑥 for some 0 ≠ 𝑥 ∈ 𝑀 and 𝑀 is torsion-free Let 0 ≠ 𝑚 ∈ 𝑀 

Define 𝑓:𝑀 → 𝑅𝑚 by 𝑓(𝑟𝑥) = 𝑟𝑚 for all 𝑟 ∈ 𝑅. If  𝑟𝑥 = 0 then 𝑟 = 0 since 

𝑀 is torsion free and hence  𝑟𝑚 = 0  , therefore  𝑓 is well-defined. Clearly, 𝑓 

is a homomorphism. If 𝑓 =0 implies  𝑟𝑚 = 0 , ∀𝑟 ∈ 𝑅, hence 𝑚 = 0 which is 

a contradiction so, 𝑓 ≠ 0 and 𝐻𝑜𝑚(𝑀,𝑅𝑚) ≠ 0,   ∀0 ≠ 𝑚 ∈ 𝑀. Thus 𝑀 is 

retractable by proposition (1.3.2). 

               In the following result, we show that in the class of torsion-free 

modules, retractability is equivalent to dualization. 

Proposition (1.3.4) 

      Let 𝑀 be a torsion-free R-module. Then 𝑀 is retractable if and only if 𝑀 

is dualizable. 
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Proof: 

 (⇒) Suppose that 𝑀 is retractable. Let 0 ≠ 𝑥 ∈ 𝑀.Then by proposition 

(1.3.2),  𝐻𝑜𝑚𝑅(𝑀, 𝑅𝑥) ≠ 0. Let 𝑓:𝑀 → 𝑅𝑥 be a non-zero homomorphism. 

Define 𝑔: 𝑅𝑥 → 𝑅 by 𝑔(𝑟𝑥) = 𝑟 for each 𝑟 ∈ 𝑅. It can easily checked that 𝑔 

is a well-defined monomorphism and hence 0 ≠ 𝑔𝑓 ∈ 𝐻𝑜𝑚(𝑀,𝑅). Therefore 

𝑀 is dualizable. 

 (⇐) Suppose that 𝑀 is dualizable.Let 0 ≠ 𝑓:𝑀 → 𝑅 be a homomorphism. 

Let 0 ≠ 𝑥 ∈ 𝑀. Define 𝑔: 𝑅 → 𝑅𝑥 by 𝑔(𝑟) = 𝑟𝑥 for all 𝑟 ∈ 𝑅, Clearly, g is a 

well-defined homomorphism and since M is torsion-free, g is a 

monomorphism, so, 0 ≠ 𝑔𝑓 ∈ 𝐻𝑜𝑚(𝑀, 𝑅𝑥) hence by proposition (1.3.2), 𝑀 

is retractable. 

Remark (1.3.5) 

      The condition M is torsion-free in proposition (1.3.4), cannot be dropped. 

For example Zn is a retractable Z-module but Zn is not dualizable, in fact Zn is 

a torsion Z-module. 

It is well-known that every faithful prime module is torsion-free [3], so 

the following result is an immediate consequence of proposition (1.3.4). 

Corollary (1.3.6) 

      Let M be a faithful prime R-module. Then M is retractable if and only if M 

is dualizable. 

         In order to give other applications of proposition (1.3.4), we need to 

recall the following: 

"An R-module M is called torsionless, if M can be embedded in a direct 

product of copies of R, equivalently, the natural homomorphism 𝜑:𝑀 → 𝑀 **   
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is a monomorphism, where 𝜑 is defined by (𝜑(𝑚))(𝑓) = 𝑓(𝑚) , ∀𝑚 ∈

𝑀, ∀𝑓 ∈ 𝑀∗ = 𝐻𝑜𝑚(𝑀,𝑅)." [44]. 

"An R-module M is called projective if for any epimorphism 𝑓: 𝐴 → 𝐵 (A and 

B are any two R-modules) and for any homomorphism 𝑔:𝑀 → 𝐵, there exists 

a homomorphism ℎ:𝑀 → 𝐴 such that 𝑓ℎ = 𝑔." [18]. That is the following 

diagram is commutative.                               M 

                                                         h                 g                                                                          

                                          A                               B                    0    

                                                         f 

 

"Lemma (1.3.7)[44,p.144] 

  

(1) A torsionless module is dualizable. 

(2) Every free (projective) module is torsionless. 

(3) If R is an integral domain, then every torsionless R-module is torsion-free. 

(4) If R is an integral domain and M is a finitely generated torsion-free           

R-module, then M is torsionless." 

    According to this lemma the following are consequence of proposition 

(1.3.4)  

Corollary (1.3.8) 

      If R is an integral domain, then every torsionless R-module is retractable 

and the converse is not true in general. 
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Proof: 

 Let M be a torsionless R-module. Then M is dualizable and torsion-free (by 

Lemma (1.3.7,(1) and (3)) and hence by proposition (1.3.4), M is retractable. 

For the converse, Zn as a Z-module is retractable but not torsionless. 

Corollary (1.3.9) 

      If R is an integral domain and M is a finitely generated torsion-free          

R-module, then M is retractable. 

Proof:  

M being finitely generated torsion-free gives M is torsionless (by lemma 

(1.3.7,(4)) and by corollary(1.3.8) M is retractable. 

Remark (1.3.10) 

       The condition M is finitely generated in corollary (1.3.9) is necessary, for 

example Q as a Z-module is not retractable in fact Q is not finitely generated 

Corollary (1.3.11) 

      If R is an integral domain and M is a free (projective) R-module, then M is 

retractable and the converse is not true in general. 

Proof: 

 M is torsionless by lemma (1.3.7,(2)) and M is retractable by corollary(1.3.8). 

For the converse, the Z-module  𝑍
n
 is neither free nor projective, but it is 

retractable. 
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        In the following result we show that the class of finitely generated 

uniform modules over an integral domain is contained properly in the class of 

retractable modules.  

Proposition (1.3.12) 

      Let R be an integral domain. Then every finitely generated uniform          

R-module is retractable. 

Proof:  

Let M be a finitely generated uniform R-module. Then 𝑀 = 𝑅𝑥
1
+ 𝑅𝑥

2
+

⋯+ 𝑅𝑥
n
 where   𝑥𝑖 ∈ 𝑀  ∀𝑖 = 1,2,… . . , 𝑛.Let 0 ≠ 𝑁 ≤ 𝑀.Then 𝑁 ≤

e
M and 

hence for each 𝑖 = 1,2,… . . , 𝑛 there exists 𝑡𝑖 ∈ 𝑅, 𝑡𝑖 ≠ 0 and 0≠ 𝑡𝑖  𝑥𝑖 ∈ 𝑁 

[27]. Let 𝑡 = 𝑡1𝑡2…… . 𝑡𝑛. Then 𝑡 ≠ 0 and 0≠ 𝑡𝑥𝑖 ∈ 𝑁 for each                     

𝑖 = 1,2,… . . , 𝑛.Now, for each 𝑚 ∈ 𝑀,𝑚 = ∑   𝑟𝑖𝑥𝑖
𝑛
𝑖=1   with  𝑟𝑖 ∈ 𝑅   ∀𝑖 =

1,2,…… , 𝑛, and 𝑡𝑚 = ∑  𝑡 (𝑟𝑖𝑥𝑖
𝑛
𝑖=1 ) =  ∑   𝑟𝑖(𝑡𝑥𝑖

𝑛
𝑖=1 ),  Hence tm∈ 𝑁     ∀𝑚 ∈

𝑀. Define 𝑓:𝑀 → 𝑁 by 𝑓(𝑚) = 𝑡𝑚    ∀𝑚 ∈ 𝑀, clearly 𝑓 is a non-zero 

homomorphism, hence 𝐻𝑜𝑚(𝑀,𝑁) ≠ 0 and therefore M is retractable. 

For the converse, Z6 as a Z-module is retractable but not uniform. 

Remark (1.3.13) 

       The condition M is finitely generated in proposition (1.3.12) cannot be 

dropped, for example Q as a Z-module is uniform however it is not 

retractable. 

In order to give some consequences of proposition (1.3.12), we have to 

recall the following: 
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"An R-module M is called injective if for any monomorphism 𝑓: 𝐴 → 𝐵        

(A and B are any two R-modules) and for any homomorphism 𝑔: 𝐴 → 𝑀, 

there exists a homomorphism ℎ: 𝐵 → 𝑀 such that ℎ𝑓 = 𝑔 ."[18]. 

"An injective hull of an R-module M denoted by 𝐸(𝑀) is defined to be an 

injective essential extension of M'" [27]. 

That is 𝐸(𝑀) is an injective R-module and  𝑀 ≤
e
𝐸(𝑀). 

"An R-module M  is called quasi-injective if every homomorphism from 

every submodule N of M to M can be extended to an endomorphism of M that 

is the following diagram is commutative" [19]. 

                                                                                                          

                          0                        N                       M 

                                                 f                    g 

                

                                                   M 
                                                                                                      
 

"A submodule N of an R-module M is called closed in M if N has no proper 

essential extension in M, that is if 𝑁 ≤
e
𝐾 ≤ 𝑀 implies  𝐾 = 𝑁".[27] 

      "An R-module M is called indecomposable if 0 and M are the only direct 

summands of M"  [27]. 

Corollary (1.3.14) 

      Let R be an integral domain and M be a finitely generated R-module If 

𝐸(𝑀) is indecomposable, then M is retractable. 

 

i 
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Proof: 

Since 𝐸(𝑀) is indecomposable, then according to [27,Exercises7,p.94] M is 

uniform and hence the result follows from proposition (1.3.12). 

Corollary (1.3.15) 

      Let R be an integral domain and M be a finitely generated R-module 

which has only two closed submodules. Then M is retractable. 

Proof: 

 Since M has exactly two closed submodules implies that M is uniform, 

[27,Exercises8,p.94] and by proposition (1.3.12), we get M is retractable 

Corollary (1.3.16) 

      Let R be an integral domain and M be a finitely generated indecomposable 

quasi-injective R-module. Then M is retractable. 

Proof: 

 M being indecomposable and quasi-injective implies that M is uniform, 

[27,Exercises10,p.94] and according to proposition (1.3.12) M is retractable 

For the next result the following concept is needed: 

"An R-module M is called quasi-projective if for each epimorphism 𝑓:𝑀 → 𝐴 

(A is any R-module) and for each homomorphism 𝑔:𝑀 → 𝐴 , there exists a 

homomorphism ℎ:𝑀 → 𝑀 such that 𝑓ℎ = 𝑔." [19]. 

A necessary and sufficient condition for the quotient of a quasi-

projective module to be retractable was presented in [7, lemma 2.1,p.38] 

without proof, we shall give its proof here. 
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Proposition (1.3.17) 

      Let M be quasi- projective R-module and N be a submodule of M. Then 

𝑀/𝑁 is retractable if and only if for all submodules L of M containing N, the 

set 𝐴𝐿 = {𝑓 ∈ 𝐸𝑛𝑑 R
(𝑀) | 𝑓(𝑁) ⊆ 𝑁, 𝑓(𝑀) ⊆ 𝐿 𝑎𝑛𝑑 𝑓(𝑀) ⊈ 𝑁} is non-

empty. 

Proof:  

(⇒) suppose that 𝑀/𝑁 is retractable. Let 𝐿 ≤ 𝑀 and 𝐿 ⊇ 𝑁. Then                 

𝐿/𝑁 ≤ 𝑀/𝑁 and hence there exists a non-zero homomorphism, say          

𝛼:𝑀/𝑁 →  𝐿/𝑁. Let 𝛽 = 𝑖𝛼𝜋 where 𝜋:𝑀 → 𝑀/𝑁 is the natural 

homomorphism and 𝑖: 𝐿/𝑁 → 𝑀/𝑁 is the inclusion homomorphism. Then 

𝛽:𝑀 → 𝑀/𝑁 is a homomorphism. Now consider the following diagram:  

                                            M   

                                                              f                       β  

 

                                          M                                        M/𝐍                        

                                                                 π 

 

where the homomorphism 𝑓 exists and make the diagram commutative 

because M is quasi-projective by hypothesis. Therefore  𝜋𝑓 = 𝛽. 

We claim that 𝑓 ∈ 𝐴𝐿 . 𝑓 ∈ 𝐸𝑛𝑑𝑅(𝑀) and 𝛽(𝑁) = 𝑖𝛼𝜋(𝑁) = 𝑖𝛼(𝑁) =

𝑖(𝑁) = 𝑁. On the other hand 𝛽(𝑁) = 𝜋𝑓(𝑁) = 𝑓(𝑁) + 𝑁. Therefore 𝑓(𝑁) +

𝑁 = 𝑁 and hence 𝑓(𝑁) ⊆ 𝑁.  

Next, we prove 𝑓(𝑀) ⊆ 𝐿. Let 𝑥 ∈ 𝑓(𝑀), then 𝑥 = 𝑓(𝑚) for some 𝑚 ∈

𝑀.   𝛽(𝑚) = 𝜋𝑓(𝑚) = 𝜋(𝑥) = 𝑥 + 𝑁 =  𝑖𝛼𝜋(𝑚) = 𝑖𝛼(𝑚 + 𝑁) =

𝛼(𝑚 + 𝑁) ∈
𝐿

𝑁
. Thus 𝛼(𝑚 + 𝑁) = 𝑙 + 𝑁  for some 𝑙 ∈ 𝐿 therefore  𝑥 + 𝑁 =
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𝑙 + 𝑁  gives 𝑥 − 𝑙 = 𝑛 for some 𝑛 ∈ 𝑁. Hence 𝑥 = 𝑓(𝑚) = 𝑙 + 𝑛 ∈ 𝐿 , so 

𝑓(𝑀) ⊆ 𝐿. 

Suppose that 𝑓(𝑀) ⊆ 𝑁.then 𝜋𝑓(𝑀) = 0̅ = 𝑁 and hence 𝛽(𝑀) = 0̅  so 

𝑖𝛼𝜋(𝑀) = 0̅ = 𝛼(𝑀/𝑁) implies that 𝛼 = 0 which is a contradiction. 

Therefore 𝑓(𝑀) ⊈ 𝑁.So, 𝑓 ∈ 𝐴𝐿 and hence  𝐴𝐿 is non-empty. 

(⇐) Assume that 𝐴𝐿 is non-empty. To prove 𝑀/𝑁 is retractable. Let 𝐿/𝑁 be a 

non-zero submodule of 𝑀/𝑁.Then L is a submodule of M containing N and 

𝐿 ≠ 𝑁. By hypothesis, there exists a homomorphism 𝑓:𝑀 → 𝑀 such that 

𝑓(𝑁) ⊆ 𝑁, 𝑓(𝑀) ⊆ 𝐿 and 𝑓(𝑀) ⊈ 𝑁. Thus 𝑓:𝑀 → 𝐿 is a homomorphism 

and hence 𝑓 induces a homomorphism 𝑓:̅𝑀/𝑁 → 𝐿/𝑁 where 𝑓(̅𝑚 + 𝑁) =

𝑓(𝑚) + 𝑁 for each 𝑚 ∈ 𝑀. 𝑓̅ ≠ 0 , for if  𝑓̅ = 0, then 𝑓 ̅(𝑀/𝑁) = 0̅ = 𝑁 and 

hence 𝑓(𝑀) + 𝑁 = 𝑁 that is 𝑓(𝑀) ⊆ 𝑁 which is a contradiction. Therefore 

0 ≠ 𝑓̅ ∈ 𝐻𝑜𝑚𝑅(𝑀/𝑁,L/𝑁). Hence M/N is retractable. 

                It is well-known  that every projective module is quasi-projective, thus 

the following is a consequence of proposition (1.3.17) 

Corollary (1.3.18) 

       Let M be a projective R-module and N be a submodule of M. Then M/N is 

retractable if and only if 𝑓 ∈ 𝐸𝑛𝑑𝑅(𝑀) such that 𝑓(𝑁) ⊆ 𝑁, 𝑓(𝑀) ⊆ 𝐿 and 

𝑓(𝑀) ⊈ 𝑁 for any submodule L of M containing M. 

For other consequences of proposition (1.3.17) we need to recall the 

following: 

"A submodule N of an R-module M is called invariant if 𝑓(𝑁) ⊆ 𝑁 for all 

𝑓 ∈ 𝐸𝑛𝑑𝑅(𝑀).M is called fully invariant if every submodule of M is 

invariant". [31] 
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Corollary (1.3.19) 

      Let M be a quasi-projective (projective) R-module and N be invariant 

submodule of M. Then 𝑀/𝑁 is retractable if and only if there exists            

𝑓 ∈ 𝐸𝑛𝑑𝑅(𝑀) such that 𝑓(𝑀) ⊆ 𝐿 and 𝑓(𝑀) ⊈ 𝑁 for all submodule L of M 

containing N. 

Corollary (1.3.20) 

      Let M be a fully invariant quasi-projective (projective) R-module and N be 

a submodule of M. Then 𝑀/𝑁 is retractable if and only if there exists 𝑓 ∈

𝐸𝑛𝑑𝑅(𝑀) such that 𝑓(𝑀) ⊆ 𝐿 and 𝑓(𝑀) ⊈ 𝑁 for all submodule L of M 

containing N. 

Recall that "An R-module M is called multiplication if every submodule N of 

M is of the form IM for some ideal I of R" [40]. 

          In the class of multiplication modules, there is a relation between the 

retractabity of the module and that of the ring, namely, we give the following 

result: 

Proposition (1.3.21) 

      Let M be a faithful multiplication R-module. Then M is retractable. 

Proof: 

 Let 0 ≠ 𝑁 ≤ 𝑀. Then 𝑁 = 𝐼𝑀 for some non-zero ideal I of R, and since R is 

a retractable ring by (Examples and Remarks (1.2.2,(1)) implies that 

𝐻𝑜𝑚(𝑅, 𝐼) ≠ 0, let 𝑓: 𝑅 → 𝐼 be a non-zero homomorphism. Put 𝑓(1) = 𝑎 for 

some 𝑎 ∈ 𝐼. Then 𝑎 ≠ 0. Define 𝑔:𝑀 → 𝑁 by 𝑔(𝑥) = 𝑎𝑥 for all 𝑥 ∈ 𝑀. 

Clearly, 𝑔 is a well-defined homomorphism. Moreover 𝑔 ≠ 0 since M is 

faithful. Therefore  𝐻𝑜𝑚(𝑀,𝑁) ≠ 0 and hence M is retractable. 
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Remark (1.3.22) 

      The condition M is multiplication in Proposition (1.3.21) in necessary, for 

instance, Q as a Z-module is not retractable and it is not multiplication. 

Corollary (1.3.23) 

      Every every faithful cyclic R-module is retractable. 
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Chapter Two 

Small Compressible and Small Retractable Modules 

Introduction 

In this chapter we present a detailed study for the concepts small 

compressible modules and small retractable modules. This chapter consists of 

three sections. In section one we study small compressible modules by 

investigating the basic properties of this type of modules. In the second 

section we recall and study the basic properties of small retractable modules. 

Next, in the third section we introduce some characterizations of small 

retractable modules; moreover we give the relationships between these 

modules and certain types of modules; also we give the concept of small epi-

retractable module with some of its basic properties. 

 

2.1. Small Compressible Modules 

The concepts of small compressible and small critically compressible 

modules are introduced in this section and many of their basic properties are 

studied, moreover we give some characterizations of these concepts. 

"Definition (2.1.1)[18] 

A proper submodule N of an R-module M is called small submodule 

(𝑁 ≪ 𝑀) if for any submodule K of M with 𝑁 + 𝐾 = 𝑀 implies 𝐾 = 𝑀. 

Equivalently, N is a small submodule of M if for every proper submodule K of 

M , 𝑁 + 𝐾 ≠ 𝑀".  
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Examples (2.1.2) 

(1) (0) is a small submodule of every module. 

(2) (0) is the only small submodule of the Z-module Z. 

(3) Every finitely generated submodule of the Z-module Q   is small in Q. 

(4) (2̅) is a small submodule of the Z-module 𝑍4. 

(5) (3̅) is not a small submodule in the Z-module 𝑍6.  

"Definition (2.1.3)[21] 

An R-module M is called small compressible if M can be embedded in 

each of its non-zero small submodule.  

Equivalently, M is small compressible if there exists a monomorphism from 

M into N whenever 0 ≠ 𝑁 ≪ 𝑀". 

A ring R is called small compressible if the R-module R is small 

compressible. That is R can be embedded in any of its non-zero small ideal. 

Examples and Remarks (2.1.4) 

(1) Every compressible module is small compressible and the converse is not 

true in general, for instance  𝑍6  as a Z-module is not compressible but 𝑍6 is 

small compressible since (0) is the only small submodule of  𝑍6 .  

(2) Let M be a small compressible module such that every submodule of M 

contains a non-zero small submodule of M, then M is compressible. 

Proof: 

 Let 0 ≠ 𝑁 ≤ 𝑀. By hypothesis there exists a small submodule 0 ≠ 𝐾 ≪ 𝑁, 

then 𝐾 ≪ 𝑀 [22,proposition 1.1.3,p.11] since M is small compressible there 
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exists 𝑓:𝑀 → 𝐾 is a monomorphism,  𝑖𝑓:𝑀 → 𝑁 is a monomorphism 

where 𝑖: 𝐾 → 𝑁 be the inclusion homomorphism, then M is compressible. 

(3) The Z-module Q is not small compressible since 𝑍 ≪ 𝑄 and 

𝐻𝑜𝑚(𝑄, 𝑍) = 0. 

(4)  𝑍4  as a Z-module is not small compressible, since (2̅) ≪ 𝑍4 but 𝑍4 

cannot be embedded in (2̅). 

(5) If M is a hollow module (every proper submodule of M is small in M). 

Then M is small compressible if and only if M is compressible. 

(6) Every simple module is small compressible but not conversely, since Z as 

a Z-module is small compressible but not simple. 

(7) Each of the rings Z and 𝑍6 is a small compressible ring. 

(8)A module M is small compressible if and only if M can be embedded in Rx 

for each 0 ≠ 𝑥 ∈ 𝑀 and 𝑅𝑥 ≪ 𝑀. 

Proof:  

(⇒) Is obvious according to the definition (2.1.3). 

(⇐) Let 0 ≠ 𝑁 ≪ 𝑀 and let 0 ≠ 𝑥 ∈ 𝑁.Then 𝑅𝑥 ≪ 𝑀[18,Lemma 

5.1.3,p.108]. By hypothesis there is a monomorphism say, 𝑓:𝑀 → 𝑅𝑥 so, the 

composition 𝑀
𝑓
→ 𝑅𝑥

𝑖
→𝑁 is a monomorphism with 𝑖: 𝑅𝑥 → 𝑁 is the 

inclusion homomorphism. Hence M is small compressible. 

(9)A small compressible module M is compressible if every cyclic submodule 

of M is small in M. 
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Proof: 

 Let 0 ≠ 𝑁 ≤ 𝑀 and 0 ≠ 𝑥 ∈ 𝑁. Then by hypothesis 𝑅𝑥 ≪ 𝑀 so there is a 

monomorphism 𝑓:𝑀 → 𝑅𝑥 and hence the composition 𝑀
𝑓
→ 𝑅𝑥

𝑖
→𝑁 is a 

monomorphism which implies that M is compressible. 

(10) Let M be a module in which every cyclic submodule of M is small in M. 

Then M is compressible if and only if M is small compressible. 

Proposition (2.1.5) 

      A small submodule of a small compressible module is also small 

compressible. 

Proof: 

 Let M be a small compressible module and 0 ≠ 𝑁 ≪ 𝑀. Let 0 ≠ 𝐾 ≪ 𝑁. 

Then  𝐾 ≪ 𝑀[18,Lemma 5.1.3,p.108] . As M is small compressible implies 

there exists a monomorphism, say 𝑓:𝑀 → 𝐾 and therefore 𝑓𝑖: 𝑁 → 𝐾 is a 

monomorphism where 𝑖: 𝑁 → 𝑀 is the inclusion homomorphism. Hence N is 

small compressible. 

Proposition (2.1.6) 

     A direct summand of a small compressible module is also small 

compressible. 

Proof:  

Let 𝑀 = 𝐴⨁𝐵 be a small compressible module and let 0 ≠ 𝐾 ≪ 𝐴. Then 

𝐾⊕ 0 ≪ 𝑀 [22,proposition1.1.4,p.11] and hence there is a monomorphism 

say, 𝑓:𝑀 → 𝐾⊕ 0 clearly 𝐾⨁0 ≃ 𝐾, so 𝑓:𝑀 → 𝐾 is a monomorphism and 
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the composition 𝐴
𝑗𝐴
→𝑀

𝑓
→𝐾 is a monomorphism where 𝑗𝐴 is the injection of 

A into M. Therefore A is small compressible. 

Proposition (2.1.7) 

     Let 𝑀1 and 𝑀2 be two isomorphic modules. Then 𝑀1 is small 

compressible if and only if 𝑀2 is small compressible. 

Proof: 

 Assume that 𝑀1 is small compressible and let   𝜑 ∶ 𝑀
1
→  𝑀

2
 be an 

isomorphism. Let 0 ≠ 𝑁 ≪ 𝑀
2
. Then 0 ≠ 𝜑−1(𝑁) ≪ 𝑀

1
 .Put  𝐾 = 𝜑−1(𝑁). 

Let 𝑓:𝑀
1
→ 𝐾 be a monomorphism and let 𝑔

K
 then 𝑔:𝐾 → 𝑀

2
 is a 

monomorphism and 𝑔(𝑘) = 𝜑(𝜑−1(𝑁)) = 𝑁, hence 𝑔:𝐾 → 𝑁 is a 

monomorphism. Now, we have the composition 𝑀
2

𝜑−1

→  𝑀
1

𝑓
→𝐾

𝑔
→𝑁. Let 

ℎ = 𝑔𝑓𝜑−1 is a monomorphism. Therefore  𝑀2 is small compressible. 

Remark (2.1.8) 

     A homomorphic image of a small compressible module need not be small 

compressible in general. 

For example, Z as a Z-module is small compressible and 𝑍/4𝑍 ≃ 𝑍4is not 

small compressible. 

Proposition (2.1.9) 

     Let 𝑀 = 𝑀1⨁𝑀2 be an R-module such that  𝑎𝑛𝑛𝑀1 + 𝑎𝑛𝑛𝑀2 = 𝑅. Then 

M is small compressible if and only if 𝑀1 and 𝑀2 are small compressible. 

Proof:  

(⇒) Follows from propositon (2.1.6). 
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(⇐) Let 0 ≠ 𝑁 ≪ 𝑀. Then by [31,proposition 4.2,p.28], 𝑁 = 𝐾1⨁𝐾2  for 

some 0 ≠ 𝐾1 ≤ 𝑀1 ≤ 𝑀 and 0 ≠ 𝐾2 ≤ 𝑀2 ≤ 𝑀. And as 𝑁 ≪ 𝑀, then 𝐾1 ≪

𝑀1 and 𝐾2 ≪ 𝑀2 by [22,proposition 1.1.4,p.11]. But 𝑀1 and 𝑀2 are small 

compressible, so there are monomorphisms 𝑓: 𝑀1 → 𝐾1 and 𝑔:𝑀2 → 𝐾2. 

Define ℎ:𝑀 → 𝑁 by ℎ(𝑎, 𝑏) = (𝑓(𝑎), 𝑔(𝑏)). It can be easily checked that h 

is a monomorphism and hence M is small compressible. 

Corollary (2.1.10) 

Let {𝑀𝑖}𝑖=1
𝑛 be a finite family of small compressible R-modules such that 

∑ 𝑎𝑛𝑛𝑀𝑖 = 𝑅
𝑛
𝑖=1 . Then ⨁𝑖=1

𝑛 𝑀𝑖 is also small compressible. 

"Definition (2.1.11)[28] 

     An R-module M is called small prime if 𝑎𝑛𝑛𝑀 = 𝑎𝑛𝑛𝑁 for each non-zero 

small submodule N of M". 

"Definition (2.1.12)[28] 

       A proper submodule N of an R-module M is called small prime 

submodule if and only if whenever rR and  xM  with (x) ≪M and rxN  

implies either xN or r  [N:M]". 

Every prime module is small prime but not conversely, for example, 𝑍6 as a 

Z-module is small prime but not prime, while Z4 is not small prime Z-module. 

"Definition (2.1.13)[21] 

     An R-module M is called small uniform if every non-zero small 

submodule of M is essential in M". 

Every uniform is small uniform but the converse need not be true in general, 

for instance the Z-module 𝑍6 is small uniform but not uniform. 
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         The following results where given in [21]. 

"Proposition (2.1.14) [21,lemma 2.3.3,p.56] 

    If M is small compressible, then M is S-prime and M is S-uniform" 

"Proposition (2.1.15)[21,theorem2.3.6,p.57] 

Let 𝑀 = 𝑅𝑚1⨁𝑅𝑚2⨁. . .⨁𝑅𝑚𝑘, where 𝑚1, 𝑚2… ,𝑚𝑘 ∈ 𝑀.If M is small 

uniform and small prime, then M is small compressible. 

         We introduce in the following theorem some characterizations of small 

compressible modules. 

Theorem (2.1.16) 

     Let M be an R-module. Then the following statements are equivalent: 

(1) M is small compressible. 

(2) M is isomorphic to an R-module of the form A/P for some small prime 

ideal P of R and an ideal A of R containing P properly. 

(3) M is isomorphic to a non-zero submodule of a finitely generated small 

uniform, small prime R-module. 

Proof:  

(1)⟹(2)  

Let 0 ≠ 𝑚 ∈ 𝑀 and 𝑅𝑚 ≪ 𝑀. Then Rm is small compressible by proposition 

(2.1.5). Therefore Rm is small prime submodule of M by proposition (2.1.14). 

By (1), there is a monomorphism, say 𝑓:𝑀 → 𝑅𝑚 and hence M is isomorphic 

to a submodule of Rm. On the other hand, 𝑅𝑚 ≃ 𝑅/𝑎𝑛𝑛(𝑚).Moreover M is 

small compressible gives M is small prime by proposition (2.1.14),and 

according to [28,proposition 3.11,p.5], 𝑎𝑛𝑛(𝑚) is a prime ideal and hence 
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small prime ideal of  R. Put 𝑎𝑛𝑛(𝑚) = 𝑝. Then 𝑀 ≃ 𝐴/𝑃 where A is an ideal 

of R contains P properly and P is a small prime ideal of R. 

(2)⟹(3) 

 By (2), 𝑀 ≃ 𝐴/𝑃 for some small prime ideal P of R and an ideal A of R 

containing P properly, so A/P is a non-zero submodule of R/P.By hypothesis 

and according to [28,Examples and Remarkes 2.2,(2)], P is a prime ideal of R, 

R/P is an integral domain and hence R/P  is a small prime R-module 

[28,Examples and Remarks 3.2, (6)], and  R/P is a finitely generated uniform 

and hence small uniform R-module, hence (3) follows. 

(3) ⟹(1) 

 By (3), M is isomorphic to a non-zero submodule of a finitely generated 

small uniform and small prime R-module, say 𝑀̀ , so 𝑀̀ is small compressible 

R-module by proposition (2.1.15). Hence M is also small compressible R-

module by proposition (2.1.7) which proves (1). 

 

In the following  theorem we give a necessary condition for a quotient 

module to be small compressible. 

Theorem (2.1.17) 

     Let N be a proper submodule of an R-module M. If M/N is small 

compressible, then N is small prime submodule of M.  

Proof:  

Let 𝑟 ∈ 𝑅, 𝑥 ∈ 𝑀, (𝑥) ≪ 𝑀 and 𝑟𝑥 ∈ 𝑁. Suppose that 𝑥 ∉ 𝑁. Then 𝑁 ⊊ 𝑁 +

(𝑥). We claim that 
𝑁+(𝑥)

𝑁
≪

𝑀

𝑁
 . Suppose that 

𝑁+(𝑥)

𝑁
+
𝐿

𝑁
=
𝑀 

𝑁  
, for some 

submodule L of M containing N. Hence 
𝑁+(𝑥)+𝐿

𝑁
=
𝑀 

𝑁  
 so 

(𝑥)+𝐿

𝑁
=
𝑀 

𝑁  
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implies that (𝑥) + 𝐿 = 𝑀. But (𝑥) ≪ 𝑀 by hypothesis, therefore 𝐿 = 𝑀 and 

𝐿

𝑁
=
𝑀

𝑁
 which means that 

𝑁+(𝑥)

𝑁
≪

𝑀

𝑁
 .Therefore there exists a 

monomorphism, say 𝑓:
𝑀

𝑁
→
𝑁+(𝑥)

𝑁
 (since 

𝑀

𝑁
 is small compressible by 

hypothesis).Now, we prove that  𝑟𝑓 (
𝑀

𝑁
) = 𝑁. Let 𝑦 ∈ 𝑓 (

𝑀

𝑁
).Then 𝑦 =

𝑓(𝑚 + 𝑁) for some 𝑚 ∈ 𝑀 on the other hand 𝑓(𝑚 + 𝑁) ∈
𝑁+(𝑥)

𝑁
, So, 𝑦 =

(𝑛 + 𝑡𝑥) + 𝑁 = 𝑡𝑥 + 𝑁 for some 𝑛 ∈ 𝑁 and 𝑡 ∈ 𝑅.But 𝑟𝑦 ∈ 𝑟𝑓 (
𝑀

𝑁
) and 

𝑟𝑦 = 𝑟𝑓(𝑚 + 𝑁) = 𝑟(𝑡𝑥 + 𝑁) = 𝑡(𝑟𝑥) + 𝑁 = 𝑁 (since 𝑟𝑥 ∈ 𝑁).Thus 

𝑟𝑓(
𝑀

𝑁
) ⊆ 𝑁 and hence 𝑟𝑓 (

𝑀

𝑁
) = 𝑁 = 𝑓(𝑟.

𝑀

𝑁
), then 𝑟

𝑀

𝑁
= 𝑁 =

𝑟𝑀+𝑁

𝑁
 and 

𝑟𝑀 + 𝑁 = 𝑁 that is 𝑟𝑀 ⊆ 𝑁. Hence  𝑟 ∈ [𝑁:𝑀] which proves that N is small 

prime. 

Theorem (2.1.18) 

    Let M be an R-module in which every cyclic submodule of M is small in M. 

Let N be a small prime submodule of M such that [𝑁:𝑀] ⊉ [𝐾:𝑀] for each 

submodule K of M containing N properly. Then M/N is  small compressible. 

Proof: 

Assume that N is a small prime submodule of M. We have to show that M/N 

is small compressible. Let 0 ≠ 𝐿/𝑁 ≪ 𝑀/𝑁. Then [𝑁:𝑀] ⊉ [𝐿:𝑀] (by 

hypothesis) and hence there exists 𝑡 ∈ [𝐿:𝑀] and  𝑡 ∉ [𝑁:𝑀]. Define 

𝑓:𝑀/𝑁 → 𝐿/𝑁 by 𝑓(𝑚 + 𝑁) = 𝑡𝑚 + 𝑁 for all 𝑚 ∈ 𝑀. Clearly, f is a 

homomorphism. To prove f is a monomorphism. Suppose that 𝑓(𝑚1 +𝑁) =

𝑓(𝑚2 +𝑁) with 𝑚1, 𝑚2 ∈ 𝑀. Then 𝑡𝑚1 − 𝑡𝑚2 = 𝑡(𝑚1 −𝑚2) ∈ 𝑁. But by 

hypothesis (𝑚1 −𝑚2) ≪ 𝑀 and N is small prime submodule of M, moreover 

𝑡 ∉ [𝑁:𝑀], therefore 𝑚1 −𝑚2 ∈ 𝑁 and hence 𝑚1 +𝑁 = 𝑚2 +𝑁. Hence f is 

a monomorphism which completes the proof. 
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    The following are some consequences of theorem (2.1.17) and (2.1.18) 

Corollary (2.1.19) 

       Let M be a small prime R-module such that 𝑎𝑛𝑛𝑀 ⊉ [𝐾:𝑀] for all non-

zero submodule K of M and every cyclic submodule of M is small in M. Then 

M is small compressible. 

Proof: 

Since M is small prime, then (0) is a small prime submodule of M [28] and 

since 𝑎𝑛𝑛𝑀 = [0:𝑀] ⊉ [𝐾:𝑀] by hypothesis therefore by the theorem 

(2.1.18) we get M is small compressible.  

Corollary (2.1.20) 

     Let M be an R-module such that 𝑎𝑛𝑛𝑀 ⊉ [𝐾:𝑀] for each submodule K of 

M and every cyclic submodule of M is small in M. Then M is small prime if 

and only if M is small compressible. 

Corollary (2.1.21) 

     Let M be a multiplication R-module, N be a proper submodule of M and 

every cyclic submodule of M is small in M. Then M/N is small compressible 

is and only if N is small prime submodule of M. 

Proof:  

As M is a multiplication module, then [𝑁:𝑀] ⊉ [𝐾:𝑀]for all submodule K of 

M containing N properly. So according to theorem (2.1.17) and (2.1.18) the 

result follows. 

 

 



 Chapter Two                                                           Small Compressible and Small Retractable Modules 

 

   36 
 

Corollary (2.1.22) 

     Let I be a proper ideal of a ring R such that every principal ideal of R is 

small in R. Then R/I is small compressible if and only if I is a small prime 

ideal of R. 

"Proposition (2.1.23) [21,proposition (2.3.7),p 59] 

Let M be a faithful finitely generated multiplication R-module, then M is 

small compressible if and only if for each (0) ≠ 𝐼 ≪ 𝑅, 𝑎𝑛𝑛𝑀𝐼 = (0)". 

"Proposition (2.1.24)[21,proposition 2.3.9,p.60] 

     Let M be a faithful finitely generated multiplication R-module. Then M is 

small compressible module if and only if R is small compressible ring". 

"Definition (2.1.25)[٢1] 

     A small compressible module M is called small critically compressible if 

M cannot be embedded in any proper quotient module M/N with 0 ≠ 𝑁 ≪

𝑀". 

Proposition (2.1.26) 

     A non-zero small submodule of a small critically compressible module is 

also small critically compressible. 

Proof: 

 Let M be a small critically compressible module and 0 ≠ 𝑁 ≪ 𝑀. Then by 

proposition (2.1.5) N is small compressible. Let 0 ≠ 𝐻 ≪ 𝑁. Then 𝐻 ≪ 𝑀 

and 𝑁/𝐻 ≪ 𝑀/𝐻  [22,proposition 1.1.2,p.10]. Suppose that there exists a 

monomorphism say 𝛼:𝑁 →  𝑁/𝐻. But M is small compressible implies that 

there is a monomorphism say 𝑓:𝑀 → 𝑁. Then the composition M
𝑓
→  𝑁
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𝛼
→  𝑁/𝐻

𝑖
→𝑀/𝐻 gives a monomorphism from M into M/H which is a 

contradiction. Therefore N is small critically compressible. 

Proposition (2.1.27) 

A direct summand of a small critically compressible is small critically 

compressible. 

Proof:  

Let 𝑀 = 𝐴⨁𝐵 be a small critically compressible module. Then M is small 

compressible and by proposition (2.1.6), A is also small compressible. Let 

0 ≠ 𝐾 ≪ 𝐴. Then 𝐾 ≃ 𝐾⨁0 ≪ 𝑀.Let 𝑓:𝑀 → 𝐾 be a monomorphism, and 

suppose that there is a monomorphism say, 𝑔: 𝐴 → 𝐴 ∕ 𝐾. Then the 

composition 𝑀
𝑓
→𝐾

𝑖
→𝐴

𝑔
→ 𝐴 ∕ 𝐾

𝑗
→𝑀 ∕ 𝐾 is a monomorphism (where i and 

j are the inclusion homomorphisms). Therefore a contradiction. Hence A is 

small critically compressible. 

We introduce the following concept: 

Definition (2.1.28) 

     A small partial endomorphism of a module M is a homomorphism from a 

small submodule of M into M. 

Examples (2.1.29) 

(1) If 0 ≠ 𝑁 ≪ 𝑀 (M is any R-module), then the inclusion homomorphism 

𝑖: 𝑁 → 𝑀 is a small partial endomorphism of M. 

(2) Let 𝑁 = (2̅) be the submodule of the Z-module 𝑍8 . Then 𝑁 ≪ 𝑀 and 

 𝑓: (2̅) → 𝑍8 defined by 𝑓(𝑥̅) = 2𝑥̅ for all 𝑥̅ ∈ 𝑁. Then f is a small partial 

endomorphism.  
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"Definition (2.1.30)[31] 

Let M be an R-module. A submodule N of M is said to be stable, if 

𝑓(𝑁) ⊆ 𝑁 for each R-homomorphism 𝑓:𝑁 → 𝑀. " 

"M is called fully stable in case each submodule of M is stable." 

Proposition (2.1.31) 

     Let M be a fully stable module. If M is  small critically compressible 

module. Then every non-zero small partial endomorphism of M is a 

monomorphism.  

Proof:  

Let 0 ≠ 𝑁 ≪ 𝑀 and 𝑓:𝑁 → 𝑀 be a non-zero small partial endomorphism. 

Then 𝑓(𝑁) ≤ 𝑁 (since M is fully stable) and 𝑁 ≪ 𝑀 gives 𝑓(𝑁) ≪ 𝑀 

[18,Lemma 5.1.3,p.108] on the other hand  𝑁/𝑘𝑒𝑟𝑓 ≃ 𝑓(𝑁), So there exists 

an isomorphism say 𝜑:𝑁/𝑘𝑒𝑟𝑓 →  𝑓(𝑁).But M is small critically 

compressible (by hypothesis) implies that there exists a monomorphism, say 

𝑔:𝑀 → 𝑓(𝑁), so the composition 𝑀
𝑔
→ 𝑓(𝑁)

𝜑−1

→  𝑁/𝑘𝑒𝑟𝑓
𝑖
→𝑀/𝑘𝑒𝑟𝑓 is a 

monomorphism and 𝑘𝑒𝑟𝑓 ≤ 𝑁 ≪ 𝑀 gives  𝑘𝑒𝑟𝑓 ≪ 𝑀. Thus M is embedded 

in 𝑀/𝑘𝑒𝑟𝑓 which is a contradiction then,  𝑘𝑒𝑟𝑓 = 0 , so f is a 

monomorphism. 

   The following proposition is a partial converse of proposition (2.1.31) 

Proposition (2.1.32) 

     Let M be a small compressible module such that the quotient of every 

submodule of M by a small submodule is small. If every small partial 

endomorphism of M is a monomorphism, then M is small critically 

compressible. 
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Proof: 

 Suppose that M is not small critically compressible then there is a non-zero 

small submodule N of M and a monomorphism 𝑓:𝑀 → 𝑀/𝑁. Therefore M is 

isomorphic to a submodule, say K/N of M/N with K is a submodule of M 

containing N. By hypothesis 𝐾/𝑁 ≪ 𝑀/𝑁 and since 𝑁 ≪ 𝑀 implies 𝐾 ≪ 𝑀 

[22, proposition 1.1.2, p.10]. Hence the composition 𝐾
𝜋
→𝐾/𝑁

𝜑−1

→  𝑀 (where 

𝜑:𝑀 → 𝐾/𝑁 is an isomorphism) is a monomorphism (by hypothesis) and 

hence 0 = ker ( 𝜑−1 𝜋) = 𝑘𝑒𝑟𝜋 = 𝑁 which is a contradiction, therefore M is 

small critically compressible. 

2.2   Small Retractable Modules  

In this section we study the concept of small retractable modules in 

some details. 

"Definition (2.2.1)[21] 

An R-module M is called small retractable if 𝐻𝑜𝑚𝑅(𝑀,𝑁) ≠ 0 for each non-

zero small submodule N of M". 

A ring R is called small retractable if the R-module R is small retractable. 

That is 𝐻𝑜𝑚𝑅(𝑅, 𝐼) ≠ 0 for each non-zero small ideal I of R. 

Examples and Remarks (2.2.2) 

(1) Every retractable module is small retractable and the converse is not 

always hold. Consider the following example: 

In example (1.2.6), we show that 𝐼 = {(
𝑎 𝑏
0 0

)    𝑎, 𝑏 ∈ 𝑅} is not retractable, 

on the other hand the only small submodule of I is the zero submodule, hence 

I is small retractable. 
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(2) If M is a hollow module, then M is retractable if and only if M is small 

retractable.  

(3) The Z-module Q is not small retractable since 𝑍 ≪ 𝑄 but 𝐻𝑜𝑚𝑅(𝑄, 𝑍)= 0. 

(4) Every integral domain is a small retractable ring but not conversely, for  

instance 𝑍6 as a 𝑍6-module is small retractable but 𝑍6is not an integral 

domain. 

(5) Every semisimple module is small retractable, however the converse is not 

true in general, for example Z is small retractable Z-module but it is not 

semisimple. 

(6) Every module over a semisimple ring is small retractable. 

(7) Every small compressible module is small retractable and the converse is 

not true in general, for example the Z-module,  𝑍24 is small retractable but not 

small compressible since {0̅, 12̅} is the only small submodule in 𝑍24 and 

𝑓: 𝑍24 → {0̅, 12̅̅̅̅ } such that 𝑓(𝑥̅) = 12𝑥̅ for all 𝑥̅ ∈ 𝑍24 is a homomorphism 

which is not monomorphism.  

(8) Let M be an R-module. Then M is a small retractable R-module if and only 

if M is a small retractable 𝑅/𝑎𝑛𝑛𝑀-module. 

Proposition (2.2.3) 

     Let M be an R-module such that 𝐸𝑛𝑑𝑅(𝑀) is a Boolean ring. If M is small 

retractable, then every non-zero small submodule of M is also small 

retractable. 

Proof: 

 As in the proof of proposition (1.2.7). 
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Proposition (2.2.4) 

      Let 𝑀1 and 𝑀2 be two isomorphic R-modules. Then 𝑀1 is small 

retractable if and only if 𝑀2 is small retractable. 

Proof: 

 As in the proof of proposition (1.2.3). 

Remark (2.2.5) 

     A direct summand (and a homomorphic image, or a quotient module) of a 

small retractable module may not be small retractable in general. 

For example, the Z-module 𝑍⨁𝑍𝑝∞  is small retractable, however 𝑍𝑝∞ is not 

small retractable, 𝑀/𝑍 ≃ 𝑍𝑝∞ is not small retractable and 𝑍𝑝∞ is a hollow Z-

module. 

In the following proposition we investigate the direct sum of small retractable 

modules. 

Proposition (2.2.6) 

     If 𝑀1 and  𝑀2 are small retractable modules such that 𝑎𝑛𝑛𝑀1 +ann𝑀2 =

𝑅 then 𝑀1⨁𝑀2 is also small retractable. 

Proof: 

 Let 0 ≠ 𝐾 ≪ 𝑀1⨁𝑀2. As 𝑎𝑛𝑛𝑀1 + 𝑎𝑛𝑛𝑀2 = 𝑅 by [31,proposition 

4.2,p.28] gives 𝐾 = 𝑁1⊕𝑁2 with 𝑁1 ≤ 𝑀1 and 𝑁2 ≤ 𝑀2.But 𝑁1⊕𝑁2 ≪

𝑀1⨁𝑀2 implies 𝑁1 ≪ 𝑀1 and 𝑁2 ≪ 𝑀2 [22,proposition 1.1.4,p.11].Therefore 

𝐻𝑜𝑚(𝑀1, 𝑁1) ≠ 0 and 𝐻𝑜𝑚(𝑀2, 𝑁2) ≠ 0. Let 0 ≠ 𝑓:𝑀1 → 𝑁1 and 0 ≠

𝑔:𝑀2,→ 𝑁2.Define ℎ:𝑀1⨁𝑀2 → 𝑁1⊕𝑁2 by ℎ(𝑚1, 𝑚2) = (𝑓(𝑚1), 𝑔(𝑚2)) 

clearly h is a homomorphism. If ℎ = 0, then  ℎ(𝑚1, 𝑚2) = 0 for all 𝑚1 ∈
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𝑀1, 𝑚2 ∈ 𝑀2,so 𝑓(𝑚1) = 0 and 𝑔(𝑚2) = 0 for all 𝑚1 ∈ 𝑀1, 𝑚2 ∈ 𝑀2, 

which is a contradiction since 𝑓 ≠ 0 and 𝑔 ≠ 0. Therefore 

𝐻𝑜𝑚(𝑀1⨁𝑀2, 𝐾) ≠ 0. 

           In the following  proposition  we  give a sufficient condition for a 

small retractable module to be retractable. 

Proposition (2.2.7) 

Let M be a small retractable module. If every non-zero submodule of M 

contains a non-zero small submodule then M is retractable. 

Proof:  

Let 0 ≠ 𝑁 ≤ 𝑀. By hypothesis N contains a non-zero small submodule. Let 

0 ≠ 𝐾 ≪ 𝑁. Then 𝐾 ≪ 𝑀 [22,proposition 1.1.3,p.11]. Hence 𝐻𝑜𝑚(𝑀,𝐾) ≠

0   (since M is small retractable), and therefore 𝐻𝑜𝑚(𝑀,𝑁) ≠ 0 so M is 

retractable. 

              As it was mentioned in Examples and Remarks(2.2.2,7) that every small 

compressible module is small retractable and the converse need not be true in 

general, we recall in the following results that the converse holds under 

certain conditions: 

Proposition (2.2.8) 

If M is a small retractable quasi-Dedekind R-module , then every non-

zero element of 𝐻𝑜𝑚(𝑀,𝑁) is a monomorphism for any non-zero small 

submodule N of M. 

Proof:  

Let 0 ≠ 𝑁 ≪ 𝑀 and let 𝑓:𝑀 → 𝑁 be a non-zero homomorphism. Then 𝑖𝑓 ∈

𝐸𝑛𝑑(𝑀) and 𝑖𝑓 ≠ 0. For if 𝑖𝑓 = 0, then 𝑖𝑓(𝑀) = 𝑓(𝑀) = 0 implies 𝑓 = 0 
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which is a contradiction. Hence 0 ≠ 𝑖𝑓 ∈ 𝐸𝑛𝑑(𝑀) and by hypothesis 𝑖𝑓 is a 

monomorphism which gives that f is a monomorphism. 

"Corollary (2.2.9)[21,proposition 2.3.21,p.65] 

Let M be a small retractable module. If M is quasi-Dedekind, then M is 

small compressible". 

Corollary (2.2.10) 

Let M be a finitely generated quasi-Dedekind R-module,then M is small 

retractable if and only if M is small prime and small uniform. 

Proof: 

From corollary (2.2.9), M is small compressible and according to 

proposition (2.1.14) and (2.1.15), the result follows. 

"Definition (2.2.11) 

A module M is called monoform if for each non-zero submodule N of M, 

every non-zero 𝑓 ∈ 𝐻𝑜𝑚(𝑁,𝑀) is a monomorphism" [25]. And "M is called 

S-monoform if for each non-zero small submodule N of M every non-zero 

𝑓 ∈ 𝐻𝑜𝑚(𝑁,𝑀) is a monomorphism"[21]. 

Corollary (2.2.12) 

Let M be a small retractable quasi-Dedekind module. Then M is                

S-monoform if and only if each non-zero small submodule of M is quasi-

Dedekind. 

Proof: 

 By corollary (2.2.9), M is small compressible and by [21,corollary 

2.3.20,p.65], M is S-monoform. 
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2.3 Some Characterizations of Small Retractable Modules 

We shall introduce some characterizations of small retractable modules 

Proposition (2.3.1) 

An R-module M is called small retractable if and only if there exists 0 ≠

𝑓 ∈ 𝐸𝑛𝑑
R
(𝑀) such that 𝐼𝑚 𝑓 ⊆ 𝑁 for each non-zero small submodule N of 

M. 

Proof:  

(⇒) Suppose that M is small retractable. Let 0 ≠ 𝑁 ≪ 𝑀. Then 𝐻𝑜𝑚
R

(𝑀,𝑁) ≠ 0. Let 𝑔:𝑀 → 𝑁 be a non-zero homomorphism and 𝑓 = 𝑖𝑔 where  

𝑖: 𝑁 → 𝑀 be the inclusion homomorphism, then  𝑓 ∈  𝐸𝑛𝑑
R
(𝑀) and 𝑓 ≠ 0  

since 𝑔 ≠0 and i is a monomorphism. Clearly,  𝑓(𝑁) = 𝑔(𝑁) ⊆ 𝑁. 

(⇐) Let 0 ≠ 𝑁 ≪ 𝑀. By hypothesis, there exists a non-zero endomorphism 

𝑓:𝑀 → 𝑀 and 𝑓(𝑀) ⊆ 𝑁. Therefore 𝑓:𝑀 → 𝑁 is a non-zero homomorphism 

this completes the proof. 

The following is another characterization of small retractable modules 

Proposition (2.3.2) 

        An R-module 𝑀 is small retractable if and only if for each 0 ≠ 𝑥 ∈ 𝑀 

with 𝑥 ≪ 𝑀 , 𝐻𝑜𝑚
R
(𝑀, 𝑅𝑥) ≠ 0. 

Proof:  

 (⇒) Is obvious. 
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(⇐) To prove M is small retractable. Let 0 ≠ 𝑁 ≪ 𝑀  and let 0 ≠ 𝑥 ∈ 𝑁, then 

𝑅𝑥 ≪ 𝑁, so by hypothesis, 𝐻𝑜𝑚(𝑀,𝑅𝑥) ≠ 0 which implies that 

𝐻𝑜𝑚(𝑀,𝑁) ≠ 0 and therefore M is small retractable. 

Proposition (2.3.3) 

        Let M be a fully invariant R-module such that 𝑓(𝑀) is a direct summand 

of M for each 𝑓 ∈ 𝐸𝑛𝑑
R
(𝑀). Then M is small retractable if and only if there 

exists 0 ≠ 𝑓 ∈ 𝐸𝑛𝑑
R
(𝑀) such that 𝑓(𝑀) is small retractable. 

Proof:  

(⇒) Let 𝑖𝑀  be the identity endomorphism of M then 𝑖𝑀(𝑀) = 𝑀 is small 

retractable. 

 (⇐) To prove M is small retractable. Let 0 ≠ 𝑁 ≪ 𝑀. By hypothesis there is 

a non-zero endomorphism 𝑓:𝑀 → 𝑀 and 𝑓(𝑀) is small retractable. Since 

𝑁 ≪ 𝑀, then 𝑓(𝑁) ≪ 𝑀 [22,proposition 1.1.3,p.11], but 𝑓(𝑁) ≤ 𝑓(𝑀) ≤ 𝑀 

and 𝑓(𝑀) is a direct summand of M (by hypothesis) implies that 𝑓(𝑁) ≪

𝑓(𝑀) [22,corollary 1.1.5,p.12] . As 𝑓(𝑀) is small retractable, so there is a 

non-zero homomorphism 𝑔: 𝑓(𝑀) → 𝑓(𝑁). But 𝑓(𝑁) ⊆ 𝑁 since N is 

invariant therefore the composition 𝑀
𝑓
→ 𝑓(𝑀)

𝑔
→ 𝑓(𝑁)

𝑖
→𝑁 gives 𝑖𝑔𝑓 ∈

𝐻𝑜𝑚(𝑀,𝑁) and 𝑖𝑔𝑓 ≠ 0, for if  𝑖𝑔𝑓 = 0, then 0 = 𝑖𝑔𝑓(𝑀) = 𝑔𝑓(𝑀) 

implies 𝑔 = 0 which is a contradiction. Therefore M is small retractable.   

"Definition (2.3.4)[9] 

An R-module M is called small projective if for each small epimorphism 

𝑓: 𝐴 → 𝐵(where A and B are any two R-modules) and for any homomorphism 

𝑔:𝑀 → 𝐵 there exists a homomorphism ℎ:𝑀 → 𝐴 such that 𝑓ℎ = 𝑔. That is 

the following diagram is commutative. 
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                                          M   

                      h                     g  

 

       A                                B                              0 (with kerf ≪ 𝐴) 
                        f      

 

where an epimorphism 𝑓: 𝐴 → 𝐵 is called small epimorphism provided that 

𝑘𝑒𝑟𝑓 ≪ 𝐴" [18]. 

"Definition (2.3.5)[10] 

A ring R is called V-ring if every simple R-module is injective". 

Remark (2.3.6) 

If R is a commutative ring, then R is V-ring if and only if R is a Von-

Neumann regular ring'' [44,corollary 3.73,p.97]. 

            In the following proposition we show that over a V-ring the class of small 

projective modules is contained in the class of small retractable modules. 

Proposition (2.3.7) 

     If R is a V-ring (or a von-Neumann regular ring), then every small 

projective R-module is small retractable. 

Proof:  

Let M be a small projective R-module. Let 0 ≠ 𝑥 ∈ 𝑀 such that 𝑅𝑥 ≪ 𝑀. We 

have to show that 𝐻𝑜𝑚(𝑀, 𝑅𝑥) ≠ 0. Let A be a maximal submodule of Rx. 

Then Rx/A is a simple R-module and hence Rx/A is injective R-module (since 

R is a V-ring). 
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Consider the following diagram:                                                                                                       

                          0                       Rx                       M 

                                                π                     f 

                

                                                Rx /A 
 

Since Rx/A is injective implies that there exists 𝑓:𝑀 → 𝑅𝑥/𝐴 such that 𝑓𝑖 =

𝜋 . Note that 𝑘𝑒𝑟𝑓 = 𝐴 ≤ 𝑅𝑥 ≪ 𝑀, so 𝑘𝑒𝑟𝑓 ≪ 𝑀 and M being small 

projective implies that there exists a homomorphism ℎ:𝑀 → 𝑅𝑥 which makes 

the following diagram commutative           

                                                              M   

                                         h                      f 

 

                       Rx                                Rx /A                              0 
                                       π   

That is 𝜋ℎ = 𝑓. We get ℎ ∈ 𝐻𝑜𝑚(𝑀,𝑅𝑥).It is left to show that ℎ ≠ 0. If ℎ =

0, then ℎ(𝑀) = 0 and 𝐴 = 𝜋(0) = 𝑓(𝑀). On the other hand 𝑓𝑖 = 𝜋 gives 

𝑓𝑖(𝑅𝑥) = 𝜋(𝑅𝑥) = 𝑅𝑥 + 𝐴. Thus 𝑓(𝑅𝑥) = 𝑅𝑥 + 𝐴 ⊆ 𝐴. Therefore 𝑅𝑥 ⊆ 𝐴 

implies 𝐴 = 𝑅𝑥 which is a contradiction since A is a maximal submodule of 

Rx, and hence ℎ ≠ 0 which proves that M is small retractable. 

"Definition (2.3.8)[9] 

A ring R is called cosemisimple if 𝑅𝑎𝑑(𝑀) = 0, for each R-module M. 

where 𝑅𝑎𝑑(𝑀) = the sum of all small submodules of M". 

 

 

i 
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Proposition (2.3.9)[6,proposition 2.1.4,p.23] 

A ring R is cosemisimple if and only if every R-module is small 

projective". 

The following result follows directly from propositions (2.3.7) and (2.3.9) 

Corollary (2.3.10) 

If R is a cosemisimple V-ring, then every R-module is small retractable. 

A relation between small uniform module and small retractable module is 

discussed under, certain conditions in the following proposition: 

Proposition (2.3.11) 

Let R be an integral domain. Then every faithful finitely generated small 

uniform R-module is small retractable 

Proof:  

Let M be a finitely generated small uniform R-module. Then 𝑀 = 𝑅𝑥
1
+ 𝑅𝑥

2

+⋯+ 𝑅𝑥
n
 where   𝑥𝑖 ∈ 𝑀  ∀𝑖 = 1,2,… . . , 𝑛. Let 0 ≠ 𝑁 ≪ 𝑀. Then 𝑁 ≤

e
M 

and hence for each 𝑖 = 1,2,… . . , 𝑛 there exists 𝑡𝑖 ∈ 𝑅, 𝑡𝑖 ≠ 0 and 0≠ 𝑡𝑖   𝑥𝑖 ∈

𝑁 [27]. Let  𝑡 = 𝑡1𝑡2…… . 𝑡𝑛. Then 𝑡 ≠ 0 and 0≠   𝑡𝑥𝑖 ∈ 𝑁 for all 𝑖 =

1,2,… . . , 𝑛 and for each 𝑚 ∈ 𝑀,  𝑚 =
 

1

 

n

i i

i

r x



  with  𝑟𝑖 ∈ 𝑅  ∀𝑖 = 1,2,…… , 𝑛. 

and 𝑡𝑚 =
1

  (  )

n

i i

i

t r x



 =
1

   ( )

n

i i

i

r t x



  and hence 𝑡𝑚 ∈ 𝑁, ∀𝑚 ∈ 𝑀. So we 

can define 𝑓:𝑀 → 𝑁 by 𝑓(𝑚) = 𝑡𝑚    ∀𝑚 ∈ 𝑀. Clearly 𝑓 is anon-zero 

homomorphism, hence 𝐻𝑜𝑚(𝑀,𝑁) ≠ 0, for if 𝑓 = 0, then 𝑡𝑚 = 0 for all 

𝑚 ∈ 𝑀 implies 𝑡 = 0 (since M is faithful), but 𝑡 ≠ 0 therefore a contradiction. 

Hence M is retractable.  
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            A sufficient condition for a faithful finitely generated multiplication R-

module to be small retractable is that R is a small retractable ring, as it is 

shown in the following proposition 

Proposition (2.3.12) 

Let M be a faithful finitely generated multiplication R-module. Then M 

is small retractable. 

Proof: 

 Let 0 ≠ 𝑁 ≪ 𝑀. Then 𝑁 = 𝐼𝑀 for some non-zero ideal I of R (since M is 

multiplication R-module). But 𝑁 ≪ 𝑀 and M is a faithful finitely generated 

multiplication R-module implies that 𝐼 ≪ 𝑅  [22, proposition1.1.8, p.14] 

therefore 𝐻𝑜𝑚(𝑅, 𝐼) ≠ 0 since R is small retractable by (Examples and 

Remarks (1.2.2,(1)). Let 𝑓: 𝑅 → 𝐼 be a non-zero homomorphism. Put 𝑓(1) =

𝑎 for some 𝑎 ∈ 𝐼 and 𝑎 ≠ 0. Define 𝑔:𝑀 → 𝑁 by 𝑔(𝑚) = 𝑎𝑚 for all 𝑚 ∈

𝑀 . It can be easily checked that g is a well-defined homomorphism, if 𝑔 = 0, 

then 𝑎𝑚 = 0 for all 𝑚 ∈ 𝑀 and therefore 𝑎 ∈ 𝑎𝑛𝑛(𝑀), hence 𝑎 = 0 (since M 

is faithful) but 𝑎 ≠ 0, therefore a contradiction and hence 𝐻𝑜𝑚(𝑀,𝑁) ≠ 0. 

Therefore M is small retractable. 

Remark (2.3.13) 

The ring Z is small retractable but the Z-module Q is not small 

retractable, in fact Q is not finitely generated multiplication Z-module. This 

means that these two conditions cannot be dropped in the proposition 

(2.3.12). 

Corollary (2.3.14) 

    Every faithful cyclic R-module is also small retractable. 
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Proof: 

By (1.3.23), every faithful cyclic R-module is retractable and hence is small 

retractable. 

The concept epi-retractable module was given in [5] as follows: 

"Definition (2.3.15) 

A module M is called epi-retractable if every submodule of M is a 

homomorphism image of M". 

Example: Every semisimple module is epi-retractable but not conversely, Z as 

a Z-module is epi-retractable but not semisimple. 

It is clear that an epi-retractable module is retractable  

Now, we give the following proposition: 

Proposition (2.3.16) 

If M is an epi-retractable module, then every non-zero submodule of M is 

also an epi-retractable. 

Proof: 

 Let 0 ≠ 𝑁 ≤ 𝑀 and 0 ≠ 𝐾 ≤ 𝑁. As M is an epi-retractable, then there exists 

epimorphisms 𝑓:𝑀 → 𝑁 and 𝑔:𝑀 → 𝐾. Define ℎ:𝑁 → 𝐾 such that 

ℎ(𝑓(𝑥)) = 𝑔(𝑥)  for all 𝑥 ∈ 𝑁, h is well-defined, for if 𝑥1 = 𝑥2 in N, then 

𝑔(𝑥1) = 𝑔(𝑥2), thus ℎ(𝑓(𝑥1)) = ℎ(𝑓(𝑥2)).h is a homomorphism since g is a 

homomorphism and ℎ ≠ 0 since 𝑔 ≠ 0. Therefore N is retractable, Moreover 

h is an epimorphism since g is an epimorphism. 
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Now, we present the concept of small epi-retractable module as in the 

following definition: 

Definition (2.3.17) 

A module M is called small epi-retractable if every small submodule of 

M is a homomorphic image of M. That is, whenever N is a small submodule 

of M, then there exists an epimorphism from M onto N. 

Examples and Remarkes (2.3.18) 

(1) Every small epi-retractable module is small retractable. 

(2) 𝑍4 as a Z-module is a small epi-retractable. Since (2̅) ≪ 𝑍4.𝑓: 𝑍4 → (2̅) is 

such that 𝑓(𝑥) = 2𝑥 is an epimorphism. 

(3) Z as a Z-module is a small epi-retractable since Z has no non-zero small 

submodules. 

(4) Every semisimple R-module is a small  epi-retractable and not conversely 

by (1). 

(5) 𝑍𝑝∞as a Z-module is not small epi-retractable. 

(6) If M is a hollow  module then M is small  epi-retractable if and only if M 

is epi-retractable. 

Proposition (2.3.19) 

A non-zero small submodule of small epi-retractable module is also 

small epi-retractable. 

Proof: 

 Let M be a small epi-retractable module and 0 ≠ 𝑁 ≪ 𝑀. Let 0 ≠ 𝐾 ≪ 𝑁. 

Then  𝐾 ≪ 𝑀[18,Lemma 5.1.3,p.108] Therefore there are epimorphisms 
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𝑓:𝑀 → 𝑁 and  𝑔:𝑀 → 𝐾. Define ℎ:𝑁 = 𝑓(𝑀) → 𝐾 = 𝑔(𝑀) by ℎ(𝑓(𝑚)) =

𝑔(𝑚) for all 𝑚 ∈ 𝑀. Clearly ℎ ∈ 𝐻𝑜𝑚(𝑁,𝐾) and ℎ ≠ 0, for if ℎ = 0. Then 

ℎ(𝑓(𝑀)) = 0 = 𝑔(𝑀) = 𝐾 which is a contradiction. Moreover h is an 

epimorphism, since ℎ(𝑁) = ℎ(𝑓(𝑀)) = 𝑔(𝑀) = 𝐾. Thus N is small epi-

retractable. 

Corollary (2.3.20) 

A direct summand of small epi-retractable is also small epi-retractable. 

Proposition (2.3.21) 

Let M be a small  epi-retractable module and N be a small submodule of 

M. Then M/N is small epi-retractable. 

Proof:  

Let 0̅ ≠ 𝐾/𝑁 ≪ 𝑀/𝑁, where K is a proper submodule of M containing N 

properly. Since N is small in M and 𝐾/𝑁 is small in 𝑀/𝑁 implies that K is 

small in M [22,proposition (1.1.2),p.10]. Hence there is an epimorphism, say 

𝑓:𝑀 → 𝐾 (since M is small epi-retractable by hypothesis). f induces a 

homomorphism 𝑓:̅𝑀/𝑁 → 𝐾/𝑁 with 𝑓(̅𝑚 + 𝑁) = 𝑓(𝑚) + 𝑁 for all 𝑚 ∈

𝑀.𝑓̅ ≠ 0,for if 𝑓̅ = 0, then 0̅ = 𝑓(̅𝑀/𝑁)= 𝑓(𝑀) + 𝑁 = 𝐾 +𝑁 (since f is an 

epimorphism). Hence 𝐾 + 𝑁 = 𝑁 implies 𝐾 = 𝑁 which is a contradiction. 

Therefore 𝐻𝑜𝑚(𝑀/𝑁,𝐾/𝑁)≠ 0. Moreover 𝑓(̅𝑀/𝑁) = 𝐾/𝑁. Thus M/N is 

small epi-retractable. 

Proposition (2.3.22) 

Let 𝑀1and 𝑀2be two small epi-retractable modules such that 𝑎𝑛𝑛𝑀1 +

𝑎𝑛𝑛𝑀2 = 𝑅. Then 𝑀1⨁𝑀2 is also small epi-retractable. 
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Proof:  

Let 0 ≠N≪ 𝑀1⨁𝑀2. Then by [31,proposition 4.2,p.28],𝑁 = 𝑁1⨁𝑁2 for 

some 0 ≠ 𝑁1 ≤ 𝑀1 and 0 ≠ 𝑁2 ≤ 𝑀2. And as 𝑁 ≪ 𝑀, then 𝑁1 ≪ 𝑀1 and 

𝑁2 ≪ 𝑀2 by [22,proposition 1.1.4,p.11].Therefore there are epimorphisms     

 𝑓:𝑀1 → 𝑁1 and 𝑔:𝑀2 → 𝑁2.Define ℎ:𝑀1⨁𝑀2 → 𝑁 by ℎ(𝑚1, 𝑚2) =

(𝑓(𝑚1), 𝑔(𝑚2)) for all (𝑚1, 𝑚2) ∈ 𝑀1⨁𝑀2. Clearly, h is a non-zero 

homomorphism and h is an epimorphism. Therefore 𝑀1⨁𝑀2 is small epi-

retractable. 

Corollary (2.3.23) 

Let {𝑀𝑖}𝑖=1
𝑛 be a finite family of small epi-retractable modules such that 

∑ 𝑎𝑛𝑛𝑀𝑖 = 𝑅
𝑛
𝑖=1 . Then ⨁𝑖=1

𝑛 𝑀𝑖 is also small epi-retractable. 
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Chapter Three 

Purely Compressible Modules and Purely 

Retractable Modules 

Introduction 

We present in this chapter another generalization of compressible 

modules and retractable modules namely, purely compressible modules and 

purely retractable modules. A detailed study is given about these concepts. 

The chapter includes four sections. Section one is devoted for purely 

compressible modules, where we present the definition with many examples 

and remarks, moreover many interesting properties of such modules are 

investigated. In the second section, we introduce and study a special type of 

purely compressible modules, namely purely critically compressible modules. 

In section three, we present the concept of purely retractable modules with 

many examples and properties of such modules. Some characterizations of 

purely retractable modules are given in the last section of this chapter; also we 

give the concept of purely epi-retractable module with some of its basic 

properties. 
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3.1 Purely Compressible Modules 

We present in this section the concept of purely compressible module 

and study its basic properties; also the relation between this concept and 

certain types of modules is studied. 

In the beginning we need to recall some concepts and some results which are 

related to the subject of this section. 

"Definition (3.1.1)[14] 

A submodule N of an R-module M is called pure if 𝑁 ∩ 𝐼𝑀 = 𝐼𝑁 for 

each ideal I of R". 

Examples (3.1.2) 

(1) (0) and M are pure submodules of any module M. 

(2) ''Every non-zero cyclic submodule of the Z-module Q is not pure'' 

[32,Example 1.2.6,p.17]. 

(3) {0,̅ 2̅} is not a pure submodule of the Z-module 𝑍4. 

(4) Each of {0,̅ 3̅} and {0,̅ 2,̅ 4̅} is a pure submodule of the Z-module 𝑍6. 

"Definition (3.1.3)[16] 

An R-module M is called pure simple if (0) and M are only pure 

submodules of M". 

 Every simple module is purely simple, but not conversely, for example, 

 𝑍4  is purely simple but not simple module. 

Example (3.1.4) 

(1) Each of Z and 𝑍4 as a Z-module is pure simple.  
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(2) Every integral domain is pure simple but not conversely.  

We recall some properties of pure submodules in the following remark: 

"Remark (3.1.5)[32,Remarks 1.2.8,p.19] 

Let N and K be submodules of an R-module M. Then  

(1) If N is a direct summand of M, then N is pure in M. 

(2) If N is pure in M and K is pure in N, then K is pure in M. 

(3) If N is pure in M and 𝐾 ≤ 𝑁, then N/K is pure in M/K. 

(4) If 𝐾 ≤ 𝑁 ≤ 𝑀 such that K is pure in M and N/K is pure in M/K, then N is 

pure in M. 

(5) If 𝐾 ∩ 𝑁 is pure in K, then N is pure in 𝑁 + 𝐾. 

(6) If 𝑁 + 𝐾 is pure in M and 𝑁 ∩ 𝐾 is pure in K, then N is pure in M.” 

"Definition (3.1.6)[23] 

A ring R is called regular ring (in the sense of Von-Neumann) if for 

every 𝑟 ∈ 𝑅 there exists 𝑡 ∈ 𝑅 such that  𝑟 = 𝑟𝑡𝑟". 

"Definition (3.1.7)[47] 

An R-module M is called regular module if for every 𝑚 ∈ 𝑀 and for all 

𝑟 ∈ 𝑅, there exists 𝑡 ∈ 𝑅 such that 𝑟𝑚 = 𝑟𝑡𝑟𝑚". 

"Proposition (3.1.8)[47] 

(1) Every module over a regular ring is regular. 

(2) An R-module M is regular if and only if every submodule of M is pure". 

 



Chapter Three                                 Purely Compressible Modules and Purely Retractable Modules 

 

   57 
 

Now, we introduce a new generalization of compressible modules, 

namely purely compressible module as in the following definition: 

Definition (3.1.9) 

An R-module M is called purely compressible if M can be embedded in 

each of its non-zero pure submodule. That is M is purely compressible if there 

exists a monomorphism 𝑓:𝑀 → 𝑁 whenever N is a non-zero pure submodule 

of M. 

A ring R is called purely compressible if R as an R-module is purely 

compressible. 

Examples and Remarks (3.1.10) 

(1) Every compressible module is purely compressible, however there are 

purely compressible modules which are not compressible. 

For example, 𝑍4  as a Z-module is purely compressible, but 𝑍4 is not 

compressible. 

(2) Every purely simple module is purely compressible and the converse need 

not be true in general. 

 (3) If R is an integral domain, then R is a purely compressible R-module but 

not conversely. 

 (4) If M is a regular module, then M is compressible if and only if M is purely 

compressible. 

(5) If R is a regular ring and M is an R-module, then M is compressible if and 

only if M is purely compressible. 

    Now, we need to recall and prove the following lemma: 
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Proposition (3.1.11) 

Let 𝑀1 and 𝑀2 be two isomorphic modules. Then 𝑀1 is purely 

compressible if and only if 𝑀2 is purely compressible. 

Proof:  

Suppose that 𝑀1is purely compressible and 𝜑:𝑀1 → 𝑀2be an isomorphism. 

Let N be a non-zero pure submodule of 𝑀2. Let 𝐾 = 𝜑−1(𝑁), then K is a 

submodule of 𝑀1. We claim that K is pure in 𝑀1. Let I be an ideal of R.  

But f is a monomorphism gives 𝜑(𝐼𝑀1 ∩ 𝐾) = 𝜑(𝐼𝑀1) ∩ 𝜑(𝐾) =

𝐼𝜑(𝑀1)⋂𝜑𝜑
−1(𝑁) = I𝑀2⋂𝑁 = 𝐼𝑁 = 𝐼𝜑(𝐾) = 𝜑(𝐼𝐾). But 𝜑 is an 

isomorphism, then 𝐼𝑀1 ∩ 𝐾 = 𝐼𝐾. Hence K is pure in 𝑀1. Let 𝑓:𝑀
1
→ 𝐾 be 

a monomorphism and let 𝑔
K

 then 𝑔:𝐾 → 𝑀
2
 is a monomorphism and 

𝑔(𝐾) = 𝜑(𝜑−1(𝑁)) = 𝑁,  hence 𝑔:𝐾 → 𝑁 is a monomorphism. Now, we 

have the composition 𝑀
2

𝜑−1

→  𝑀
1

𝑓
→𝐾

𝑔
→𝑁. Let ℎ = 𝑔𝑓𝜑−1 ,is a 

monomorphism . Therefore 𝑀2 is purely compressible. 

Proposition (3.1.12) 

A non-zero pure submodule of a purely compressible module is purely 

compressible. 

Proof: 

 Let M be a purely compressible module and N be a non-zero pure submodule 

of M. Let K be a pure submodule of N. Then K is pure in M (by Remark 

(3.1.5),(2)). Therefore there is a monomorphism say 𝑓:𝑀 → 𝐾 and hence 

𝑖𝑓: 𝐾 → 𝑁 is also a monomorphism where 𝑖: 𝐾 → 𝑁 is the inclusion 

homomorphism. Thus N is purely compressible. 
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Corollary (3.1.13) 

      Every direct summand of a purely compressible module is a purely 

compressible. 

Corollary (3.1.14) 

Let M be a regular module. If M is purely compressible, then every non-

zero submodule of M is purely compressible. 

Corollary (3.1.15) 

Let R be a regular ring and M be a purely compressible R-module. Then 

every non-zero submodule of M is purely compressible. 

Remark (3.1.16) 

A homomorphic image (or a quotient) of purely compressible module 

need not be purely compressible in general. For example, Z as a Z-module is 

purely compressible but 𝑍/6𝑍 ≃ 𝑍6 is not a purely compressible Z-module. 

Also this example shows the conditions R is a regular ring in corollary 

(3.1.15), cannot be discarded. 

Remark (3.1.17) 

The direct sum of purely compressible modules is not necessarily purely 

compressible. Consider the following example. 

Example (3.1.18) 

Let 𝑀 = 𝑍4⨁𝑍2 as a Z-module. Each of 𝑍4 and 𝑍2 is purely 

compressible Z-module. But M is not purely compressible as it is shown 

below: 

 M= {(0̅, 0̅), (0̅, 1̅), (1̅, 0̅), (1̅, 1̅), (2̅, 0̅), (2̅, 1̅), (3̅, 0̅), (3̅, 1̅)}, 
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A= 𝑍(1̅, 1̅) = {(0̅, 0̅), (1̅, 1̅), (2̅, 0̅), (3̅, 1̅)}, and  B= 𝑍(2̅, 1̅) = {(0̅, 0̅), (2̅, 1̅)}. 

Clearly, 𝑀 = 𝐴⨁𝐵 and hence each of A and B is a pure submodule of M, but 

each of A and B does not contain a copy of M, that is M cannot be embedded 

in A (or in B). Therefore M is not purely compressible. 

           Now, we introduce the following concepts: 

"Definition (3.1.19)[43] 

An R-module M is called purely prime if 𝑎𝑛𝑛(𝑀) = 𝑎𝑛𝑛(𝑁) for each 

non-zero pure submodule N of M. " 

Clearly, every prime module is purely prime; but not conversely. For instance, 

the Z-module 𝑍4 is purely prime but not prime. While 𝑍6 as a Z-module is not 

purely prime (in fact it is not prime). 

Definition (3.1.2٠) 

A submodule N of a module M is called purely prime submodule if 

whenever 𝑟𝑥 ∈ 𝑁  with 𝑟 ∈ 𝑅, 𝑥 ∈ 𝑀 and (𝑥) is pure in M implies either 𝑥 ∈

𝑁 or 𝑟 ∈ [𝑁:𝑀]. 

Example (3.1.21) 

Let 𝑀 = 𝑍6 as a Z-module and 𝑁 = (2̅). N is pure in  𝑍6 and N is purely 

prime submodule of M. 

Lemma (3.1.2٢) 

An R-module M is purely prime if and only if (0) is a purely prime 

submodule of M. 
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Proof:  

(⟹) Suppose that 𝑟𝑥 = 0 with 𝑟 ∈ 𝑅, 𝑥 ∈ 𝑀 and (𝑥) is pure in M. Assume 

that 𝑥 ≠ 0. Since M is purely prime (by hypothesis) implies that 𝑎𝑛𝑛𝑀 =

𝑎𝑛𝑛(𝑥) and hence 𝑟 ∈ 𝑎𝑛𝑛𝑀 = [0:𝑀] hence (0) is a purely prime 

submodule of M. 

(⟸) Suppose that (0) is a purely prime submodule of M, let N be a non-zero 

pure submodule of M and let 𝑟 ∈ 𝑎𝑛𝑛𝑁. Then 𝑟𝑥 = 0 for all 𝑥 ∈ 𝑁, and 

hence 𝑟𝑥 ∈ (0). Assume that 𝑥 ≠ 0, then 𝑟 ∈ [0:𝑀] = 𝑎𝑛𝑛𝑀, therefore 

𝑎𝑛𝑛𝑁 ⊆ 𝑎𝑛𝑛𝑀, so 𝑎𝑛𝑛𝑀 = 𝑎𝑛𝑛𝑁, thus M is purely prime. 

Lemma (3.1.23) 

Let M be a module in which every submodule of a pure submodule is 

also pure. If M is purely prime module, then 𝑎𝑛𝑛𝑁 is a prime ideal of R for 

each non-zero pure submodule N of M. 

Proof: 

 Let 𝑁 be a non-zero pure submodule of M. let 𝑎, 𝑏 ∈ 𝑅 and 𝑎𝑏 ∈ 𝑎𝑛𝑛𝑁. 

Then 𝑎𝑏𝑁 = 0. Suppose that 𝑏𝑁 ≠ 0. But 𝑏𝑁 ≤ 𝑁 and N is pure in M. By 

hypothesis 𝑏𝑁 is pure in M, but M is purely prime and 𝑎 ∈ 𝑎𝑛𝑛𝑏𝑁 implies 

𝑎 ∈ 𝑎𝑛𝑛𝑀,on the other hand 𝑎𝑛𝑛𝑀 = 𝑎𝑛𝑛𝑁,so 𝑎 ∈ 𝑎𝑛𝑛𝑁 and hence 𝑎𝑛𝑛𝑁 

is a prime ideal of R. 

The converse of Lemma (3.1.23 ) is not true in general 

For example: 𝑍6 is not purely prime Z-module, however 𝑎𝑛𝑛𝑧(2̅) = 3𝑍 and 

𝑎𝑛𝑛𝑧(3̅) = 2𝑍 which are both prime ideals in Z and that (2̅), (3̅) are pure 

submodule of 𝑍6. 
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Proposition (3.1.24) 

Every purely compressible module is purely prime. 

Proof: 

 Let M be a purely compressible module. Let N be a non-zero pure submodule 

of M. We have to show that 𝑎𝑛𝑛𝑀 = 𝑎𝑛𝑛𝑁. Let 𝑟 ∈ 𝑎𝑛𝑛𝑁. Then 𝑟𝑁 = 0. 

Let 𝑓:𝑀 → 𝑁 be a monomorphism, then 𝑓(𝑟𝑀) = 𝑟𝑓(𝑀) ⊆ 𝑟𝑁 = 0 implies 

that 𝑟𝑀 = 0, thus 𝑟 ∈ 𝑎𝑛𝑛𝑀 and therefore 𝑎𝑛𝑛𝑀 = 𝑎𝑛𝑛𝑁. 

"Definition (3.1.25)[4] 

       A module M is said to have the pure sum property (PSP) if the sum of 

any two pure submodules of M is pure in M". 

Proposition (3.1.26) 

    Let M be a module having PSP and N be a proper submodule of an R-

module M. If M/N is purely compressible, then N is purely prime submodule 

of M. 

Proof: 

 Let 𝑟𝑥 ∈ 𝑁 with 𝑟 ∈ 𝑅, 𝑥 ∈ 𝑀 and (𝑥) is pure in M. suppose that 𝑥 ∉ 𝑁. We 

have to show that 𝑟 ∈ [𝑁:𝑀]. 𝑥 ∉ 𝑁 implies 𝑁 < 𝑁 + (𝑥). Since M has PSP 

by hypothesis, then 𝑁 + (𝑥) is a pure submodule of M and hence 
𝑁+(𝑥)

𝑁
 is a 

pure submodule of  
𝑀

𝑁
 by (Remark 3.1.5,(3)). But 

𝑀

𝑁
 is purely compressible (by 

hypothesis), therefore there exists a monomorphism, say 𝑓:
𝑀

𝑁
→

𝑁+(𝑥)

𝑁
. We 

can prove 𝑟𝑓 (
𝑀

𝑁
) = 𝑁 as in the proof of (2.1.17). But f is a monomorphism, 

implies that 
𝑟𝑀

𝑁
= 𝑁, thus 𝑟𝑀 ⊆ 𝑁 and therefore 𝑟 ∈ [𝑁:𝑀] hence N is purely 

prime submodule of M. 



Chapter Three                                 Purely Compressible Modules and Purely Retractable Modules 

 

   63 
 

      We note that the converse of proposition (3.1.26) hold in case every cyclic 

submodule of M is pure in M as we shall show in the following result. 

Proposition (3.1.27) 

        Let M be a module such that every cyclic submodule of M is pure in M. 

If N is a proper purely prime submodule of M such that  [𝑁:𝑀] ⊉ [𝐾:𝑀] for 

all submodules K of M containing N properly. Then M/N is purely 

compressible. 

Proof:  

Let 𝐿/𝑁 be a pure submodule of 𝑀/𝑁  with L is a submodule of M containing 

N properly. By hypothesis [𝑁:𝑀] ⊉ [𝐿:𝑀], so there exists 𝑡 ∈ [𝐿:𝑀] and 𝑡 ∉

[𝑁:𝑀]. Define 𝑓:𝑀/𝑁 → 𝐿/𝑁  such that 𝑓(𝑚 + 𝑁) = 𝑡𝑚 + 𝑁 for all 𝑚 ∈

𝑀. Clearly f is a homomorphism. To prove f is a monomorphism. Let 𝑚+

𝑁 ∈ 𝑘𝑒𝑟𝑓.Then 𝑓(𝑚 + 𝑁) = 𝑁, so 𝑡𝑚 + 𝑁 = 𝑁  implies 𝑡𝑚 ∈ 𝑁. As N is 

purely prime submodule of M and (𝑚) is pure in M, moreover 𝑡 ∉ [𝑁:𝑀], 

therefore 𝑚 ∈ 𝑁(by definition (3.1.20), so 𝑘𝑒𝑟𝑓 = 𝑁 and hence f  is a 

monomorphism, whence M/N is purely compressible. 

           In order to give some applications of proposition (3.1.26), the following 

lemmas are needed 

"Lemma (3.1.28)[33,proposition 2.4.5,p.58] 

Every multiplication module has PSP". 

"Lemma (3.1.29)[33,theorem 2.4.6,p.58] 

       A ring R is regular if and only if every R-module has PSP". 
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Corollary (3.1.30) 

Let M be a multiplication module and N be a proper pure submodule of 

M If M/N is purely compressible, then N is purely prime submodule of M. 

Proof: 

 M being a multiplication module implies that [𝑁:𝑀] ≠ [𝐾:𝑀] for any two 

distinct submodules N and K of M, moreover M has PSP by lemma (3.1.28). 

Hence the result follows by proposition (3.1.26). 

Corollary (3.1.31) 

Let M be a cyclic module and N is a proper pure submodule of M. If M/N 

is purely compressible, then N is purely prime submodule. 

Proof:  

As M is a cyclic module gives M is a multiplication module, and according to 

corollary (3.1.30), we get the result. 

Corollary (3.1.32) 

Let R be a regular ring and N is a proper submodule of M . If M/N is 

purely compressible, then N is purely prime submodule. 

Proof: 

 By proposition (3.1.8), M is a regular module and N is a pure submodule of 

M. And by lemma (3.1.29), M has PSP. Hence N is purely prime submodule 

by proposition (3.1.26). 
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Corollary (3.1.33) 

Let M be an R-module such that 𝑎𝑛𝑛𝑀 ⊉ [𝐾:𝑀] for each non-zero 

submodule K of M. Then M is purely compressible if and only if (0) is a 

purely prime submodule of M, if and only if M is a purely prime module. 

Next we present the concept of purely uniform module. 

Definition (3.1.34) 

An R-module M is called purely uniform if the intersection of any two 

non-zero pure submodules of M is non-zero.  

Equivalently, M is purely uniform if every non-zero pure submodule of M is 

essential in M. 

Equivalently, M is purely uniform if every non-zero pure submodule of M is 

purely essential in M. 

Clearly every uniform module is purely uniform. 

Remark (3.1.35) 

A non-zero pure  submodule N of a module M is purely essential if and 

only if for each 0 ≠ 𝑥 ∈ 𝑀 with 𝑅𝑥 is a pure submodule of M there exists 

 0 ≠ 𝑟 ∈ 𝑅 such that 0 ≠ 𝑟𝑥 ∈ 𝑁. 

Proof: 

 (⟹) Is clear 

(⇐) Let K be a non-zero pure submodule of M. Let 0 ≠ 𝑥 ∈ 𝐾 with 𝑅𝑥 is a 

pure submodule of M. Then 0 ≠ 𝑟𝑥 ∈ 𝑁 for some 0 ≠ 𝑟 ∈ 𝑅 (by hypothesis). 

Therefore 0 ≠ 𝑟𝑥 ∈ 𝑁 ∩ 𝐾 implies N is purely essential in M. 
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Proposition (3.1.36) 

Every purely compressible module is purely uniform. 

Proof: 

 Let M be a purely compressible module. Let  0 ≠ 𝑥 ∈ 𝑀 such that Rx is a 

pure submodule in M and let 𝑓:𝑀 → 𝑅𝑥 be a monomorphism. Then 𝑓(𝑥) =

𝑟𝑥 for  some 0 ≠ 𝑟 ∈ 𝑅. Let  0 ≠ 𝑚 ∈ 𝑀 and let 𝑓(𝑚) = 𝑡𝑥 ≠ 0 for some 

0 ≠ 𝑡 ∈ 𝑅. Then 𝑓(𝑟𝑚) = 𝑟𝑓(𝑚) = 𝑟(𝑡𝑥) = 𝑡(𝑟𝑥) = 𝑡𝑓(𝑥) = 𝑓(𝑡𝑥) and 

hence 𝑟𝑚 = 𝑡𝑥 ∈ 𝑅𝑥 and  𝑟𝑚 ≠ 0. For if  𝑟𝑚 = 0, then 0 = 𝑓(𝑟𝑚) = 𝑡𝑥 =

𝑓(𝑚) gives 𝑚 = 0 which is a contradiction. So Rx is purely essential in M 

and hence M is purely uniform. 

 

In the class of faithful finitely generated multiplication modules we give 

the following characterization of purely compressible modules: 

Theorem (3.1.37) 

Let M be a faithful finitely generated multiplication R-module. Then M 

is purely compressible if and only if for each non-zero pure ideal I of R, 

𝑎𝑛𝑛𝑀(𝐼) = 0. 

Proof:  

(⟹) Let I be a non-zero pure ideal of R. Then 𝑁 = 𝐼𝑀 is a pure submodule of 

M [30, theorem 1.4,p.67] but M is purely compressible implies M is purely 

prime (by proposition (3.1.24), and hence 𝑎𝑛𝑛𝑅(𝑀) = 𝑎𝑛𝑛𝑅(𝑁) =

𝑎𝑛𝑛𝑅(𝐼𝑀) = 𝑎𝑛𝑛𝑅𝐼.Therefore 𝑎𝑛𝑛𝑅(𝐼) = 0(since M is faithful). Now, to 

prove  𝑎𝑛𝑛𝑀(𝐼) = 0. Let 𝑎𝑛𝑛𝑀(𝐼) = 𝐾𝑀 for some ideal K of R we have 

𝐼𝑎𝑛𝑛𝑀(𝐼) = 0 and hence 𝐼𝐾𝑀 = 0 implies 𝐼𝐾 ⊆ 𝑎𝑛𝑛𝑅𝑀 = 0, so 𝐼𝐾 = 0, 

therefore 𝐾 ⊆ 𝑎𝑛𝑛𝑅(𝐼) = 0, so 𝐾 = 0 and hence 𝑎𝑛𝑛𝑀(𝐼) = 0 
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(⟸) To prove M is purely compressible. Let N be a non-zero pure submodule 

of M. then 𝑁 = 𝐼𝑀 for some non-zero pure ideal I of R [30,theorem 1.4,p.67]. 

Let 0 ≠ 𝑎 ∈ 𝐼 and define 𝑓:𝑀 → 𝑁 by 𝑓(𝑚) = 𝑎𝑚 for all 𝑚 ∈ 𝑀. Clearly f 

is a well-defined homomorphism. Let 𝑚 ∈ 𝑘𝑒𝑟𝑓. Then 𝑎𝑚 = 0 therefore 

𝑚 ∈ 𝑎𝑛𝑛𝑀(𝑎). but (𝑎) ≤ 𝐼 and I is pure in R implies (𝑎) is pure in R (since 

M is faithful multiplication module) by [30,p.65]. Hence 𝑎𝑛𝑛𝑀(𝑎) = 0 (by 

hypothesis), so 𝑚 = 0 and therefore 𝑘𝑒𝑟𝑓 = 0 which gives M is purely 

compressible. 

Corollary (3.1.38) 

Let M be a faithful finitely generated multiplication R-module. Then M 

is purely compressible if and only if 𝐻𝑜𝑚𝑅(𝑅/𝐼,𝑀) = 0 for each non-zero 

pure ideal I of R. 

Proof:  

By [31,lemma 2.7,p.45], 𝑎𝑛𝑛𝑀(𝐼)≃ 𝐻𝑜𝑚𝑅(𝑅/𝐼,M) for each ideal I of R 

hence the result follows according to theorem (3.1.37). 

 

Since every cyclic module is a multiplication module, the following are 

also consequences of theorem (3.1.37). 

Corollary (3.1.39) 

Let M be a faithful cyclic R-module. Then M is purely compressible if 

and only if 𝑎𝑛𝑛𝑀(𝐼) = 0 for each non-zero pure ideal I of R. 

Corollary (3.1.40) 

A ring R is purely compressible if and only if 𝑎𝑛𝑛𝑅(𝐼) = 0 for each non-

zero pure ideal I of R. 
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Proposition (3.1.41) 

Let M be a faithful finitely generated multiplication R-module. Then M 

is purely compressible if and only if R is purely compressible ring. 

Proof: 

 (⟹) Let I be a non-zero pure ideal of R. we have to show that 𝑎𝑛𝑛𝑅(𝐼) = 0. 

Let 𝑟 ∈ 𝑎𝑛𝑛𝑅(𝐼). Then 𝑟𝐼 = 0 and hence 𝑟𝐼𝑀 = 0 implies that 𝑟𝑀 ⊆

𝑎𝑛𝑛𝑀(𝐼). But M is purely compressible by hypothesis and according to 

theorem (3.1.37), 𝑎𝑛𝑛𝑀(𝐼) = 0, hence 𝑟𝑀 = 0, so 𝑟 ∈ 𝑎𝑛𝑛𝑅(𝑀) = 0 since 

M is faithful and hence 𝑟 = 0. Therefore 𝑎𝑛𝑛𝑅(𝐼) = 0 and by corollary 

(3.1.40), R is purely compressible ring. 

(⟸) Let I be a non-zero pure ideal of R. Then 𝑁 = 𝐼𝑀 is a non-zero pure 

submodule of M.[30,theorem 1.4,p.67].But R is purely compressible gives 

𝑎𝑛𝑛𝑅(𝐼) = 0 (by corollary(3.1.40), and it can be checked easily that 

𝑎𝑛𝑛𝑀(𝐼) = (𝑎𝑛𝑛𝑅(𝐼))𝑀,therefore 𝑎𝑛𝑛𝑀(𝐼) = 0, so by theorem (3.1.37) , M 

is purely compressible. 

Corollary (3.1.42) 

Let M be a faithful finitely generated multiplication R-module. If M is 

purely prime, then M is purely compressible. 

Proof: 

 Let I be a non-zero pure ideal of R. Then IM is a pure submodule of M 

[30,theorem 1.4,p.67].but M is purely prime (by hypothesis), therefore 

𝑎𝑛𝑛𝑅(𝑀) = 𝑎𝑛𝑛𝑅(𝐼𝑀) by definition (3.1.19) and since M is faithful (by 

hypothesis)implies 𝑎𝑛𝑛𝑅(𝐼𝑀) = 0 = 𝑎𝑛𝑛𝑅(𝐼). But 𝑎𝑛𝑛𝑀(𝐼) = (𝑎𝑛𝑛𝑅𝐼)𝑀 =

0.  𝑀 = 0. Therefore 𝑎𝑛𝑛𝑀(𝐼) = 0 implies that M is purely compressible (by 

theorem (3.1.37). 
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Corollary (3.1.43) 

Let M be a faithful finitely generated multiplication R-module then M is 

purely compressible if and only if M is purely prime. 

Proof: 

 Follows from proposition (3.1.24) and corollary (3.1.42). 

Corollary (3.1.44) 

Let M be a faithful cyclic R-module then M is purely compressible if and 

only if M is purely prime. 

Corollary (3.1.45) 

A ring R is purely compressible if and only if R is purely prime. 

Before we state and prove the next result we need to recall and prove the 

following two lemmas. 

Lemma (3.1.46) 

     If M is an R-module such that every cyclic submodule is pure, then every 

purely prime submodule of M is prime in M. 

Proof: 

Let N be a purely prime submodule and 𝑟𝑥 ∈ 𝑁 with 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑀.By 

hypothesis 𝑅𝑥 is a pure submodule of M and N is purely prime, implies that 

either 𝑥 ∈ 𝑁 or 𝑟 ∈ [𝑁:𝑀] and hence N is a prime submodule of M. 

Lemma (3.1.47) 

     Let R be a ring in which every principal ideal is pure. If P is purely prime 

ideal of R, then R/P is purely uniform R-module. 
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Proof: 

Let A/P be a non-zero pure submodule of R/P. To prove A/P is purely 

essential in R/P. Let 𝑥 + 𝑃 ≠ 𝑃 in R/P with 𝑅(𝑥 + 𝑃) is pure in R/P. Let 𝑎 +

𝑃 ≠ 𝑃 in A/P. Note that 𝑥 ∉ 𝑃 and 𝑎 ∉ 𝑃 we claim that 𝑎𝑥 ∉ 𝑃. Suppose that 

𝑎𝑥 ∈ 𝑃.As P is purely prime and Rx is pure in R gives either 𝑥 ∈ 𝑃 or 𝑎 ∈

[𝑃: 𝑅]. But 𝑥 ∉ 𝑃, so, 𝑎 ∈ [𝑃: 𝑅] implies 𝑎𝑅 ⊆ 𝑃 and hence 𝑎 ∈ 𝑃 which is a 

contradiction. Therefore 𝑃 ≠ 𝑎𝑥 + 𝑃 = 𝑎(𝑥 + 𝑃) ∈ 𝐴/𝑃 which implies that 

A/P is purely essential and hence R/P is purely uniform. 

Theorem (3.1.48) 

Let R be a ring in which every principle ideal is pure. Let M be a faithful 

finitely generated multiplication R-module such that every submodule of a 

pure submodule is also pure. Then the following statements are equivalent: 

(1) M is purely compressible. 

(2) M is isomorphic to an R-module of the form A/P for some purely prime 

ideal P of R and an ideal A of R containing P properly. 

(3) M is isomorphic to a non-zero submodule of a finitely generated purely 

uniform, purely prime R-module. 

Proof: 

(1)⟹(2)  

Let 0 ≠ 𝑚 ∈ 𝑀 and 𝑅𝑚 is pure in M. Then 𝑅𝑚 is purely compressible by 

proposition (3.1.12). Hence 𝑅𝑚 is purely prime by proposition (3.1.24). As M 

is purely compressible, then there exists a monomorphism, say 𝑓:𝑀 → 𝑅𝑚 

that is M is isomorphic to a submodule of 𝑅𝑚. But 𝑅𝑚 ≃ 𝑅/𝑎𝑛𝑛(𝑚) and M  

is purely prime R-module implies that ann(m) is prime, and hence purely 
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prime ideal of R by lemma (3.1.23). Let 𝑃 = 𝑎𝑛𝑛(𝑚). Then 𝑅𝑚 ≃ 𝑅/𝑃 and 

M is isomorphic to a submodule of 𝑅/𝑃, say 𝐴/𝑃 where A is an ideal of R 

containing P properly and P is a purely prime ideal of R. 

(2) ⟹(3)  

By (2), 𝑀 ≃ 𝐴/𝑃 for some purely prime ideal P of R and an ideal A of R 

containing P properly, hence A/P is a non-zero submodule of the finitely 

generated module R/P. But P is purely prime ideal of R implies that R/P is 

purely prime R-module by lemma(3.1.22) and by Lemma (3.1.47) A/P is 

purely uniform R-module.  

(3) ⟹ (1)  

By (3), M is isomorphic to a non-zero submodule of a finitely generated 

purely uniform and purely prime R-module, say 𝑀̀, and according to 

(corollary (3.1.42) 𝑀̀ is purely compressible R-module hence M is purely 

compressible R-module (by proposition (3.1.11)). 

Corollary (3.1.49) 

Let R be a ring in which every principle ideal is pure. Let M be a cyclic 

faithful  R-module such that every submodule of a pure submodule is also 

pure. Then the following statements are equivalent: 

(1) M is purely compressible. 

(2) M is isomorphic to an R-module of the form A/P for some purely prime 

ideal P of R and an ideal A of R containing P properly. 

(3) M is isomorphic to a non-zero submodule of a finitely generated purely 

uniform, purely prime R-module. 
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3.2. Purely Critically Compressible Modules 

A special type of purely compressible modules is given and studied in 

this section, namely purely critically compressible module. 

Definition (3.2.1) 

An R-module M is called purely critically compressible if M is purely 

compressible and M cannot be embedded in any of its quotient modules M/N 

with N is a non-zero proper pure submodule of M. 

Examples and Remarks (3.2.2) 

(1) Every critically compressible module is purely critically compressible. In 

particular Z as a Z-module is purely critically compressible, in fact it is 

critically compressible. 

(2) 𝑍𝑛 as a Z-module is not purely critically compressible ∀𝑛 > 1. 

(3) The Z-module Q is not purely critically compressible.  

(4) 𝑍𝑝∞  as a Z-module is not purely critically compressible. 

(5) If R is a regular ring (in the sense of von Neumann), then R as an             

R-module is critically compressible if and only if R is purely critically 

compressible. This is follows from the fact that R is a regular ring if and only 

if every ideal of R is pure. 

(6) If M is a regular module then M is purely critically compressible if and 

only if M is critically compressible. 

Proposition (3.2.3) 

Let M  be a purely critically compressible module then every non-zero 

pure submodule of M is also purely  critically compressible. 
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Proof: 

 Let N be a non-zero pure submodule of M. Then N is purely compressible (by 

proposition (3.1.12). Let H be a pure submodule of N. Then H is pure in M 

and N/H is pure in M/H (by Remark (3.1.5, (2) and (3)). Suppose that there is 

a monomorphism, say 𝛼:𝑁 → 𝑁/𝐻. But M is purely compressible implies 

that there is a monomorphism, say 𝑓:𝑀 → 𝑁. Then the composition M
𝑓
→  𝑁

𝛼
→  𝑁/𝐻

𝑖
→𝑀/𝐻 is a monomorphism where i is the inclusion homomorphism. 

So M is embedded in M/H which is a contradiction since M is purely critically 

compressible. Hence N is purely critically compressible. 

Corollary (3.2.4) 

A non-zero direct summand of a purely critically compressible is also 

purely critically compressible. 

       Now, we need to introduce the following concept: 

Definition (3.2.5) 

A pure partial endomorphism of a module M is a homomorphism from a 

pure submodule of M into M. 

Examples (3.2.6) 

(1) If N is a pure submodule of a module M, then the inclusion 

homomorphism 𝑖: 𝑁 → 𝑀 is a pure partial endomorphism of M. 

(2) If N is a direct summand of an R-module M, then every homomorphism 

from N into M is a pure partial endomorphism of M.  

(3) If M is a regular module (or a semisimple module). Then every partial 

endomorphism of M is a pure partial endomorphism of M. 
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Proposition (3.2.7) 

Let M be a fully stable module in which every submodule of a proper 

pure submodule is also pure. If M is purely critically compressible, then every 

non-zero pure partial endomorphism of M is a monomorphism. 

Proof: 

 Let N be a non-zero pure submodule of M and 𝑓: 𝑁 → 𝑀 be a non-zero 

partial endomorphism then 𝑁/𝑘𝑒𝑟𝑓 ≃ 𝑓(𝑁). By hypothesis each of 𝑘𝑒𝑟𝑓 and 

𝑓(𝑁) is pure in M, and since M is purely compressible then there is a 

monomorphism, say  𝑔:𝑀 → 𝑓(𝑁). Then the composition 

 𝑀
𝑔
→  𝑓(𝑁)

is o .


  𝑁/𝑘𝑒𝑟𝑓

in c l.

i
   𝑀/𝑘𝑒𝑟𝑓 is an embedding of M into 

𝑀/𝑘𝑒𝑟𝑓 which is a contradiction since M is purely critically compressible. 

Therefore 𝑘𝑒𝑟𝑓 = 0 and hence f is a monomorphism. 

Proposition (3.2.8) 

Let M be a purely compressible module such that the quotient of every 

submodule of M by a pure submodule is pure. If every non-zero pure partial 

endomorphism of M is a monomorphism, then M is purely critically 

compressible. 

Proof:  

Assume that M is not purely critically compressible. Therefore there is a non-

zero pure submodule N of M and a monomorphism 𝑓:𝑀 → 𝑀/𝑁. Hence M is 

isomorphic to a submodule say K/N of M/N. By hypothesis K/N is pure in 

M/N and since N is pure in M implies K is pure in M (by Remark (3.1.5),(4)). 

The composition 𝐾
𝜋
→𝐾/𝑁

is o .


  𝑀 is a pure partial endomorphism of M. 
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So by hypothesis 𝜑𝜋 is a monomorphism and hence ker(𝜑𝜋) = 0 = 𝑘𝑒𝑟𝜋 =

𝑁 which is a contradiction. 

Proposition (3.2.9) 

Every purely critically compressible module  is indecomposable but not 

conversely. 

Proof: 

 Let M be a purely critically compressible module. Suppose that M is 

decomposable. Then 𝑀 = 𝐴⨁𝐵 with A and B are non-zero proper pure 

submodules of M. So,  𝐵 ≃ 𝑀/𝐴. Let 𝛼: 𝐵 → 𝑀/𝐴 be an isomorphism but M 

is purely compressible, hence there is a monomorphism say 𝑓:𝑀 → 𝐵 and 

therefor 𝛼𝑓:𝑀 → 𝑀/𝐴 is a monomorphism, which is a contradiction. 

For the converse Q as a Z-module is indecomposable but not purely critically 

compressible. 

 

3.3 Purely Retractable Modules 

In this section we introduce and study the concept purely retractable 

module as a generalization of retractable module. Some characterizations of 

such modules are given. Moreover, the relationships between this concept and 

some other types of module are also investigated. 

Definition (3.3.1) 

An R-module M is called purely retractable if 𝐻𝑜𝑚(𝑀,𝑁) ≠ 0 for each 

non-zero pure submodule N of M. 

A ring R is called purely retractable if the R-module R is purely retractable, 

that is 𝐻𝑜𝑚𝑅(𝑅, 𝐼) ≠ 0 for each non-zero pure ideal I of R. "where an ideal I 
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of R is called pure if  𝐼𝐽 = 𝐼 ∩ 𝐽 for each ideal J of R" [47,proposition 

1.3,p.8]. 

Examples and Remarks (3.3.2) 

(1) Every retractable module is purely retractable, but the converse is not true 

in general. Consider example (1.2.6) where 𝑆 = {(
𝑎 𝑏
0 𝑐

) : 𝑎, 𝑏 ∈ 𝑅}, S is a 

retractable ring and 𝐼 = {(
𝑎 𝑏
0 0

) : 𝑎, 𝑏 ∈ 𝑅} is a non-retractable S-module. 

We claim  that I is purely retractable. Let 𝐽 = {(
𝑎 0
0 0

) : 𝑎 ∈ 𝑅} and  𝐾 =

{(
0 𝑏
0 0

) : 𝑏 ∈ 𝑅}, J and K are the only non-zero proper submodules of I and it 

is clear that 𝐼 = 𝐽⨁𝐾 and hence J and K are pure in I. Also it is clear that 

𝐻𝑜𝑚𝑠(𝐼, 𝐽) ≠ 0 and 𝐻𝑜𝑚𝑠(𝐼, 𝐾) ≠ 0 so, I is a purely retractable S-module. 

(2) Every pure simple module is purely retractable. The Z-modules 𝑍, 𝑍4 and 

𝑍𝑃∞ are pure simple. On the other hand 𝑍𝑝∞  is not retractable Z-module. 

(3) Every purely compressible module is purely retractable and the converse 

need not be true in general. For example, 𝑍6 as a Z-module is purely 

retractable but not purely compressible. 

(4) If M is a regular module, then M is purely retractable if and only if M is 

retractable. 

(5) If R is a regular ring and M is an R-module, then M is purely retractable if 

and only if M is retractable. 

(6) Every semisimple (simple) module is purely retractable. 

(7) Let M be an R-module. Then M is purely retractable R-module if and only 

if M is purely retractable 𝑅/𝑎𝑛𝑛𝑀-module. 
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Proposition (3.3.3) 

If 𝑀1 and 𝑀2 are two isomorphic modules, then 𝑀1 is purely retractable 

if and only if 𝑀2 is so. 

Proof: 

 As in the proof (3.1.11) and proof (1.2.3). 

Proposition (3.3.4) 

Let M be an R-module such that 𝐸𝑛𝑑𝑅(𝑀) is a Boolean ring. If M is 

purely retractable, then every non-zero pure submodule of M is also purely 

retractable. 

Proof: 

 As in the proof of proposition (1.2.7). 

Corollary (3.3.5) 

Let M be a module such that 𝐸𝑛𝑑(𝑀) is a Boolean ring. If M is purely 

retractable, then every direct summand of M is also purely retractable. 

Proposition (3.3.6) 

If N is a proper  purely prime submodule of a module M such that 

[𝑁:𝑀] ⊉ [𝐾:𝑀] for all submodules K of M containing N properly, then 𝑀/𝑁 

is purely retractable. 

Proof:  

Let 𝐿/𝑁 be a pure submodule of 𝑀/𝑁with L is a submodule of M containing 

N properly. By hypothesis [𝑁:𝑀] ⊉ [𝐿:𝑀], so there exists 𝑡 ∈ [𝐿:𝑀] and 𝑡 ∉

[𝑁:𝑀]. Define 𝑓:𝑀/𝑁 → 𝐿/𝑁  such that 𝑓(𝑚 + 𝑁) = 𝑡𝑚 + 𝑁 for all 𝑚 ∈

𝑀. Clearly f is a homomorphism and 𝑓 ≠ 0, if 𝑓 = 0 then 𝑡𝑚 + 𝑁 = 𝑁, 𝑡𝑚 ∈
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𝑁 for all 𝑚 ∈ 𝑀. Thus 𝑡 ∈ [𝑁:𝑀] which is a contradiction. Therefore 𝑀/𝑁 is 

purely retractable. 

 

We are now going to investigate when a purely retractable is purely 

compressible. 

Proposition (3.3.7) 

Let M be a purely retractable quasi-Dedekind R-module, then M is a 

purely compressible. 

Proof:  

Let N be a non-zero pure submodule of M and let 𝑓:𝑀 → 𝑁 be a non-zero 

homomorphism. then 𝑓𝑖:𝑀 → 𝑀 be an endomorphism on M, where 𝑖: 𝑁 → 𝑀 

is the inclusion homomorphism. By hypothesis 𝑖𝑓 is a monomorphism and 

hence f is a monomorphism. Therefore M is purely compressible. 

Corollary (3.3.8) 

Let M be a purely retractable quasi-Dedekind module. Then M is purely 

prime and purely uniform. 

Proof: 

 By corollary (3.3.7), M is purely compressible and according to proposition 

(3.1.24) and (3.1.36), M is purely prime and purely uniform. 

Corollary (3.3.9) 

If M is a purely retractable quasi-Dedekind module in which the quotient 

of every submodule of M by a pure submodule of M is also pure, then M is 

purely critically compressible. 
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Proof:  

By corollary (3.3.7), M is purely compressible and by proposition (3.2.8), M 

is purely critically compressible. 

 

3.4 Some Characterizations of Purely Retractable Modules 

We introduce in this section necessary and (or) sufficient conditions for a 

module to be purely retractable. 

As a characterization of purely retractable module we have the following 

proposition 

Proposition (3.4.1) 

Let M be a module. Then M is purely retractable if and only if there 

exists 0 ≠ 𝜑 ∈ 𝐸𝑛𝑑
R
(𝑀) such that 𝐼𝑚 𝜑 ⊆ 𝑁 for each non-zero pure 

submodule N of M. 

Proof:  

(⇒) Suppose that M is purely retractable. Let N be a non-zero pure submodule 

of M. Then 𝐻𝑜𝑚
R
(𝑀,𝑁) ≠ 0. Let 0 ≠ 𝑓:𝑀 → 𝑁 be a non-zero 

homomorphism. Let 𝜑 = 𝑖𝑓 where  𝑖: 𝑁 → 𝑀 be the inclusion homo-

morphism, then  𝜑 ∈  𝐸𝑛𝑑
R
(𝑀), 𝜑 ≠ 0   and 𝐼𝑚𝜑 = 𝑖𝑓(𝑀) = 𝑓(𝑀) ⊆ 𝑁. 

(⇐) To prove M is purely retractable, let N be a non-zero pure submodule of 

M. By hypothesis, there exists a non-zero endomorphism 𝜑:𝑀 → 𝑀 such that 

𝐼𝑚𝜑 = 𝜑(𝑀) ⊆ 𝑁, hence 𝜑:𝑀 → 𝑁 is a non-zero homomorphism, thus 0 ≠

𝜑 ∈ 𝐻𝑜𝑚(𝑀,𝑁), therefore M is purely retractable. 
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Proposition (3.4.2) 

Let M be a module such that every cyclic submodule of a pure 

submodule of M is pure in M. Then M is purely retractable if and only if 

𝐻𝑜𝑚(𝑀, 𝑅𝑥) ≠ 0 for each 0 ≠ 𝑥 ∈ 𝑀 with 𝑅𝑥 is pure in M. 

Proof:  

(⇒) Obvious. 

(⇐) Let N be a non-zero pure submodule of M. Let 0 ≠ 𝑥 ∈ 𝑀. By hypothesis 

𝑅𝑥 is pure in M and 𝐻𝑜𝑚(𝑀,𝑅𝑥) ≠ 0 and hence 𝐻𝑜𝑚(𝑀,𝑁) ≠ 0, therefore 

M is purely retractable. 

Corollary (3.4.3) 

Let M be a module in which every cyclic submodule of M is pure. Then 

M is purely retractable if and only if 𝐻𝑜𝑚(𝑀, 𝑅𝑥) ≠ 0 for each 0 ≠ 𝑥 ∈ 𝑀. 

Corollary (3.4.4) 

Let R be a regular (Von-Neumann) ring. Then every projective R-module 

is purely retractable (In fact retractable). 

Proof:  

Let M be a projective R-module and let 0 ≠ 𝑥 ∈ 𝑀. Since R is a is regular 

ring, then Rx is a direct summand of M, [44,Exercies 17,p.57]. Therefore Rx is 

a pure submodule of M (by Remark (3.1.5),(1)) and 𝐻𝑜𝑚(𝑀,𝑅𝑥) ≠ 0. Hence 

M is purely retractable (by corollary (3.4.3)). 

              In order to give other consequences of proposition (3.4.2) we need to 

recall the following definition 
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"Definition (3.4.5)[44] 

An R-module M is called finitely presented (f.p.) if there exists a short 

exact sequence 0 → 𝐾
𝑓
→ 𝐹

𝑔
→𝑀 → 0 such that F is a finitely generated free 

R-module and K is a finitely generated R-module". 

Corollary (3.4.6) 

Every finitely presented module is purely retractable. 

Proof:  

Let M be a f.p. module. Let 0 ≠ x ∈ M such that 𝑅𝑥 is pure in M. Then Rx is a 

direct summand of M [44, ,Exercies 32,p.163]. Therefore Hom(𝑀, 𝑅𝑥) ≠ 0 

and according to corollary (3.4.3) M is purely retractable. 

Corollary (3.4.7) 

Every finitely generated projective module is purely retractable. 

Proof:  

Let M be a finitely generated projective module. Then M is finitely presented 

[44, ,Exercies 1,p.159] and by corollary (3.4.6) M is purely retractable. 

        In the following proposition we also give a sufficient condition for a 

module to by purely retractable. 

Proposition (3.4.8) 

Let M be a module such that every non-zero pure submodule of M 

contains a non-zero direct summand of M. Then M is purely retractable. 
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Proof:  

Let N be a non-zero pure submodule of M. By hypothesis there is 0 ≠ 𝐴 ≤ 𝑁 

and A is a direct summand of M. So, 𝑀 = 𝐴⨁𝐵 for some 0 ≠ 𝐵 < 𝑀 . Let 

𝜌𝐴:𝑀 → 𝐴 be the projection homomorphism. Therefore 𝜌𝐴 ∈ 𝐻𝑜𝑚(𝑀,𝐴) 

and 𝑖𝜌𝐴 ∈ 𝐻𝑜𝑚(𝑀,𝑁) where 𝑖: 𝐴 → 𝑁 is the inclusion homomorphism.  

If  𝑖𝜌𝐴 = 0, then 0 = 𝑖𝜌𝐴(𝑀) = 𝜌𝐴(𝑀) ≃ 𝐴, implies 𝐴 = 0 which is a 

contradiction therefore 𝐻𝑜𝑚(𝑀,𝑁) ≠ 0, hence M is purely retractable. 

            While the following  proposition  gives a sufficient condition for a purely 

retractable module to be retractable: 

Proposition (3.4.9) 

Let M be a module such that every non-zero submodule of M contains a 

non-zero direct summand of M. if M is purely retractable, then M is 

retractable. 

Proof: 

 Let 0 ≠ 𝑁 ≤ 𝑀. By hypothesis there is a direct summand of M, say K and 

𝐾 ⊆ 𝑁. Then K is pure in M (Remark (3.1.5),(1)) As M is purely retractable 

implies 𝐻𝑜𝑚(𝑀,𝐾) ≠ 0 and hence 𝐻𝑜𝑚(𝑀,𝑁) ≠ 0. Therefore M is 

retractable. 

Corollary (3.4.10) 

Let M be a module such that every non-zero submodule of M contains a 

non-zero direct summand of M. Then M is retractable if and only if M is 

purely retractable. 

 

     Now, the following definition is needed: 
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"Definition (3.4.11)[32] 

    A module M is called purely lifting module if for every submodule N of M, 

there exists a pure submodule K of M such that  𝐾 ⊆ 𝑁 and 𝑁/𝐾 ≪ 𝑀/𝐾". 

             The following corollary is a direct consequence of proposition (3.4.9): 

Corollary (3.4.12) 

If M is a purely lifting module, then M is retractable if and only if M is 

purely retractable. 

"Definition (3.4.13)[ 34] 

An R-module M is called a V-module, if for every factor module N of 

M,𝑅𝑎𝑑(𝑁) = 0". 

Proposition (3.4.14) 

Let M be a V-module. If M is purely lifting, then M is retractable if and 

only if M is purely retractable. 

Proof:  

As M is a V-module, then M is purely lifting if and only if M is a regular 

module [32,proposition 2.2.4,p.40]. And according to (Examples and 

Remarks (3.3.2),(4)), M is retractable if and only if M is purely retractable. 

Proposition (3.4.15) 

Let M be a finitely generated multiplication R-module,then M is purely 

retractable module. 
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Proof:  

Let N be a non-zero pure submodule of M. Then 𝑁 = 𝐼𝑀 for some non-zero  

ideal I of R. We claim that I is pure in R. Let J be an ideal of R. Then 𝐽𝑀 ∩

𝑁 = 𝐽𝑀 ∩ 𝐼𝑀 = (𝐽 ∩ 𝐼)𝑀 (since M is faithful multiplication), but 𝐼𝑀 is pure 

in M. gives 𝐽𝑀 ∩ 𝐼𝑀 = 𝐽(𝐼𝑀) = (𝐽𝐼)𝑀. Hence (𝐽 ∩ 𝐼)𝑀 = (𝐽𝐼)𝑀, so 𝐽 ∩ 𝐼 =

𝐽𝐼[ 48,proposition 3.4,p.55]. Therefore I is a pure ideal in R. But R is purely 

retractableby (Examples and Remarks 1.2.2,(1))implies that 𝐻𝑜𝑚(𝑅, 𝐼) ≠ 0. 

Let 0 ≠ 𝑓: 𝑅 → 𝐼 be a homomorphism. Let 𝑓(1) = 𝑎. Then 𝑎 ≠ 0. Define 

𝑔:𝑀 → 𝑁 by 𝑔(𝑚) = 𝑎𝑚 for all 𝑚 ∈ 𝑀 clearly, g is a well-defined 

homomorphism, and 𝑔 ≠ 0 since M is faithful. Therefore 𝐻𝑜𝑚(𝑀,𝑁) ≠ 0 

which is what we wanted. 

Corollary (3.4.16) 

 Every faithful cyclic R-module is also purely retractable. 

      Now, we present the concept of purely epi-retractable module as in the 

following definition: 

Definition (3.4.17) 

A module M is called purely epi-retractable if every pure submodule of 

M is a homomorphic image of M. That is, whenever N is a pure submodule of 

M, then there exists an epimorphism from M onto N. 

Examples and Remarkes (3.4.18) 

(1) Every purely epi-retractable module is purely retractable 

(2)𝐼 = {(
𝑎 𝑏
0 𝑜

) : 𝑎, 𝑏 ∈ 𝑅} in (3.3.2,(1)) is purely epi-retractable S-module. 
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(3) Q as a Z-module is not epi-retractable and hence not purely epi-

retractable. 

(4) Every semisimple module is purely epi-retractable. 

(5) Every pure simple module is purely epi-retractable. 

(6) If M is a regular module (or R is a regular ring), then M is purely epi-

retractable if and only if M is epi-retractable. 

Proposition (3.4.19) 

A non-zero pure submodule of purely epi-retractable module is also 

purely epi-retractable. 

Proof: 

 Let M be a purely epi-retractable module and let N be a non-zero pure 

submodule of M. let K be a non-zero pure submodule of N. Then K is pure in 

M (by Remark 3.1.5,(2)). Therefore there are epimorphisms 𝑓:𝑀 → 𝑁 

and  𝑔:𝑀 → 𝐾. Define ℎ:𝑁 = 𝑓(𝑀) → 𝐾 = 𝑔(𝑀) by ℎ(𝑓(𝑚)) = 𝑔(𝑚) for 

all 𝑚 ∈ 𝑀. Clearly ℎ ∈ 𝐻𝑜𝑚(𝑁,𝐾) and ℎ ≠ 0, for if ℎ = 0. Then 

ℎ(𝑓(𝑀)) = 0 = 𝑔(𝑀) = 𝐾 which is a contradiction. Moreover h is an 

epimorphism, since ℎ(𝑁) = ℎ(𝑓(𝑀)) = 𝑔(𝑀) = 𝐾. Thus N is purely epi-

retractable. 

Corollary (3.4.20) 

A direct summand of purely epi-retractable is also purely epi-retractable. 

Proposition (3.4.21) 

Let M be a purely epi-retractable module and N be a pure submodule of 

M. Then M/N is purely epi-retractable. 
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Proof:  

Let 0̅ ≠ 𝐾/𝑁 be a pure submodule of 𝑀/𝑁, where K is a proper submodule 

of M containing N properly. Since N is pure in M and 𝐾/𝑁 is pure in 𝑀/𝑁 

implies that K is pure in M (by Remark 3.1.5,(4)). Hence there is an 

epimorphism, say 𝑓:𝑀 → 𝐾 (since M is purely epi-retractable by hypothesis). 

f induces a homomorphism 𝑓:̅𝑀/𝑁 → 𝐾/𝑁 with 𝑓(̅𝑚 + 𝑁) = 𝑓(𝑚) + 𝑁 for 

all 𝑚 ∈ 𝑀.𝑓̅ ≠ 0,for if 𝑓̅ = 0, then 0̅ = 𝑓(̅𝑀/𝑁)= 𝑓(𝑀) + 𝑁 = 𝐾 +𝑁 

(since f is an epimorphism). Hence 𝐾 + 𝑁 = 𝑁 implies 𝐾 = 𝑁 which is a 

contradiction. Therefore 𝐻𝑜𝑚(𝑀/𝑁,𝐾/𝑁)≠ 0. Moreover 𝑓(̅𝑀/𝑁) = 𝐾/𝑁. 

Thus M/N is purely epi-retractable. 

Proposition (3.4.22) 

Let 𝑀1and 𝑀2be two purely epi-retractable modules such that 𝑎𝑛𝑛𝑀1 +

𝑎𝑛𝑛𝑀2 = 𝑅. Then 𝑀1⨁𝑀2 is also purely epi-retractable. 

Proof:  

Let N be a non-zero pure submodule of 𝑀1⨁𝑀2. Then by [31,proposition 

4.2,p.28] 𝑁 = 𝑁1⨁𝑁2 for some submodule 𝑁1 of 𝑀1 and 𝑁2of 𝑀2. By 

[13,proposition 4.2 ] 𝑁1 is pure in 𝑀1 and 𝑁2 is pure in 𝑀2. Therefore there 

are epimorphisms      𝑓:𝑀1 → 𝑁1 and 𝑔:𝑀2 → 𝑁2.Define ℎ:𝑀1⨁𝑀2 → 𝑁 by 

ℎ(𝑚1, 𝑚2) = (𝑓(𝑚1), 𝑔(𝑚2)) for all (𝑚1, 𝑚2) ∈ 𝑀1⨁𝑀2. Clearly, h is a 

non-zero homomorphism and h is an epimorphism. Therefore 𝑀1⨁𝑀2 is 

purely epi-retractable. 

Corollary (3.4.23) 

Let {𝑀𝑖}𝑖=1
𝑛 be a finite family of purely epi-retractable modules such that 

∑ 𝑎𝑛𝑛𝑀𝑖 = 𝑅
𝑛
𝑖=1 . Then ⨁𝑖=1

𝑛 𝑀𝑖 is also purely epi-retractable. 
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Chapter Four 

Primely Compressible Modules and Primely 

Retractable Modules 

Introduction 

The last generalization for compressible and retractable modules in our 

work is given by using the concept of prime submodules. This is the subject 

of this chapter, where we introduce in this chapter the concepts of primely 

compressible and primely retractable modules. The chapter consists of five 

sections. In the first section we introduce the concepts of generalized prime 

modules and generalized prime submodule which are basic concepts in our 

study of the subject of chapter four, where we give this concepts with some of 

their basic properties which are needed in the next sections. In section two, 

we give the concept of primely compressible modules with some examples, 

basic properties, characterizations and the relationships of such modules with 

some types of modules. In the third section, we give and study a sort of 

primely compressible modules, namely primely critically compressible 

modules. The forth section is devoted to primely retractable modules, where 

we give the definition with many examples; also we investigate the basic 

properties of such modules. In section five, we give necessary and (or) 

sufficient conditions for modules to be primely retractable. Moreover in this 

section, we present the concept of primely  epi-retractable modules with some 

examples and study some of its basic properties. 
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4.1 Generalized Prime Modules 

In this section we shall introduce the concepts generalized prime module 

and generalized prime submodules and study some of their properties that are 

related to our work in the next sections of this chapter. 

"Definition (4.1.1)[29] 

     A module M is called fully prime if every proper submodule of M is a 

prime submodule".        

 𝑍𝑝 as a Z-module is fully prime for each prime number P. 

Examples and Remarks (4.1.2) 

(1) Each of Q and Z as Z-modules is prime module. 

(2) Z is not prime submodule of Q. In fact (0) is the only prime submodule of 

Q. while pZ is a prime submodule of Z for each prime number p. 

(3) "A module M is torsion-free if and only if M is a prime and faithful 

module"[12,remark 1.1,p.33]. 

(4) "Every direct summand of a prime module is a prime submodule" 

[12,proposition 1.2,p.34] 

(5) "A module M is prime if and only if 0 is a prime submodule of 

M"[29,p.303] 

(6) "Let p be a prime number. Then the Z-module 𝑍𝑝∞  has no prime 

submodules"[2,Example and Remark 1.1.20,p.34]. 
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       As a generalization of prime module and prime submodule we introduce 

the concepts generalized prime module and generalized prime submodule as 

follows: 

Definition (4.1.3) 

An R- module M is called a generalized prime module if 𝑎𝑛𝑛(𝑀) =

𝑎𝑛𝑛(𝑁) for each non-zero prime submodule N of M. 

Examples (4.1.4) 

(1) Every prime module is generalized prime but not conversely in general, 

for example the Z-module 𝑍𝑝∞  is a generalized prime, since it is primeless 

(has no prime submodules) but it is not prime. 

(2) Every simple module is generalized prime. 

(3) Every torsion-free fully prime module is a generalized prime. 

Definition (4.1.5) 

A submodule N of a module M is called generalized prime submodule if 

whenever 𝑟𝑥 ∈ 𝑁 with 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑀 and 𝑅𝑥 is a prime submodule of M, 

then either 𝑥 ∈ 𝑁 or 𝑟 ∈ [𝑁:𝑀]. 

Every prime submodule is a generalized prime submodule but not conversely. 

For example: The Z-module 𝑍12is not a prime submodule of 𝑍12, but it is a 

generalized prime submodule of 𝑍12. 

Proposition (4.1.6) 

     Let M be a generalized prime module then (0) is a generalized prime 

submodule of M. The converse holds if every cyclic submodule of M is a 

prime submodule of M. 
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Proof:  

(⟹) Let 𝑟 ∈ 𝑅, 𝑥 ∈ 𝑀  and 𝑅𝑥 is a prime submodule of M such that 𝑟𝑥 = 0. 

If 𝑥 ≠ 0, then 𝑎𝑛𝑛𝑀 = 𝑎𝑛𝑛(𝑥) (Since M is generalized  prime by 

hypothesis).Hence 𝑟 ∈ 𝑎𝑛𝑛𝑀 = [0:𝑀]. If 𝑥 = 0, then 𝑥 ∈ (0). Therefore (0) 

is generalized prime submodule of M. 

(⟸) Suppose that 0 is a generalized prime submodule of M, let N be a non-

zero prime submodule of M and let 𝑟 ∈ 𝑎𝑛𝑛𝑁. Then 𝑟𝑥 = 0 for all 𝑥 ∈ 𝑁. So, 

𝑟𝑥 ∈ (0). Assume that 𝑥 ≠ 0, then 𝑟 ∈ [0:𝑀](since (0) is a generalized prime 

submodule of M by hypothesis), but [0:𝑀] = 𝑎𝑛𝑛𝑀, hence 𝑟 ∈ 𝑎𝑛𝑛𝑀 gives  

𝑎𝑛𝑛𝑁 ⊆ 𝑎𝑛𝑛𝑀 and therefore  𝑎𝑛𝑛𝑀 = 𝑎𝑛𝑛𝑁, thus M is generalized prime. 

Corollary (4.1.7) 

   Let M be a module such that every cyclic submodule of M is prime. Then N 

is generalized prime submodule of M if and only if M/N is a generalized 

prime module. 

Propsition (4.1.8) 

   Let M be an R-module such that a non-zero cyclic submodule of a direct 

summand of M is a prime submodule of M. If M is a generalized prime, then 

every non-zero direct summand of M is a prime submodule of M. 

Proof: 

Let K be a non-zero direct summand of M. then 𝑀 = 𝐾⨁𝐻 for same non-zero 

submodule H of M. to prove K is a prime submodule of M. Let 𝑟𝑥 ∈ 𝐾 with 

𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑀. Then 𝑥 = 𝑎 + 𝑏 with 𝑎 ∈ 𝐾 and 𝑏 ∈ 𝐻, suppose that 𝑥 ∉ 𝐾 

then 𝑏 ≠ 0,𝑟𝑥 = 𝑟𝑎 + 𝑟𝑏 and 𝑟𝑏 = 𝑟𝑥 − 𝑟𝑎 ∈ 𝐻 ∩ 𝐾 = (0). Thus 𝑟𝑏 = (0) 

and (b) is a non-zero submodule of H by hypothesis (b) is a prime submodule 

of M. And (0) is generalized prime submodule of M by Proposition (4.1.6) 
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implies that 𝑟 ∈ [0:𝑀] = 𝑎𝑛𝑛 𝑀 (since 𝑏 ≠ 0). So 𝑟𝑀 = (0), therefore 𝑟 ∈

[𝐾:𝑀] which gives K is a prime submodule of M. 

"Definition (4.1.9)[49] 

An R-module M is called Z-regular module if  for all 𝑎 ∈ 𝑅, there exists 

𝑥 ∈ 𝑅 such that 𝑎 = 𝑎𝑥𝑎". 

Proposition (4.1.10) 

Let M be a Z-regular R-module. If M is generalized prime such that a 

non-zero cyclic submodule of a direct summand of M is a prime submodule of 

M ,then 𝑎𝑛𝑛𝑁 is a prime ideal of R for each non-zero cyclic prime submodule 

N of M. 

Proof:  

Let 0 ≠ 𝑁 = (𝑥) be a prime submodule of M. Let 𝑎, 𝑏 ∈ 𝑅 such that 𝑎𝑏𝑁 =

0.Then 𝑎𝑏𝑥 = 0.Suppose that 𝑏𝑥 ≠ 0. Let 𝐾 = (𝑏𝑥), then 𝐾 ≤ 𝑁. But M is 

regular gives K is a direct summand of M [49,proposition 2.3,p.30], and by 

proposition (4.1.8) K is a prime submodule of M. But 𝑎 ∈ 𝑎𝑛𝑛𝐾 implies 𝑎 ∈

𝑎𝑛𝑛𝑀 = 𝑎𝑛𝑛𝑁 (since M is generalized prime) therefore 𝑎𝑛𝑛𝑁 is a prime 

ideal of R.  

 

4.2 Primely Compressible Modules 

We shall give in this section the concept of primely compressible module 

as a generalization of compressible modules. Many basic properties of such 

modules are also studied. Moreover the relationships between these types of 

modules are given.  
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Definition (4.2.1) 

     An R-module M is called primely compressible if M can be embedded in 

each of its non-zero prime submodule. That is M is purely compressible if 

there exists a monomorphism 𝑓:𝑀 → 𝑁 whenever N is a non-zero prime 

submodule of M.  

A ring R is primely compressible if R as an R-module is primely 

compressible. 

Examples and Remarks (4.2.2) 

(1) Every compressible is primely compressible but the converse need not be 

true in general, for example the Z-module Q is not compressible but primely 

compressible since 0 is the only prime submodule of Q. 

(2) If R is an integral domain and K is the field of fraction of R, then 0 is the 

only prime submodule of K as an R-module [29] so, K is a primely 

compressible R-module. 

(3) Every simple module is primely compressible. 

(4) If M is a fully prime module, then M is primely compressible if and only if 

M is compressible. 

(5) Let M be a torsion-free module such that [𝑁:𝑀] = 0 for each proper 

submodule N of M. Then M is primely compressible if and only if M is purely 

compressible. 

Proof:  

Since M is torsion-free and [𝑁:𝑀] = 0 for each proper submodule N of M 

implies that N is a prime submodule of M if and only if N is a pure submodule 

of M [15]. Hence the result follows. 
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(6) Let M be a prime faithful module such that [𝑁:𝑀] = 0 for each proper 

submodule N of M. Then M is primely compressible if and only if M is a 

purely compressible. 

Proof: 

 Since M is faithful prime module then M is torsion-free [12,Remark 1.1,p.33] 

and by (5) M is primely compressible if and only if M is purely compressible. 

(7) Let M be a prime module such that 𝑎𝑛𝑛𝑀 = [𝑁:𝑀] for each proper 

submodule N of M. Then M is primely compressible if and only if M is purely 

compressible. 

Proof: 

 According to the hypothesis and[12,proposition 1.3,p.34] implies that N is 

prime submodule of M if and only if N is a pure submodule of M. Therefore 

the result follows. 

Proposition (4.2.3) 

If 𝑀1 and 𝑀2are isomorphic R-modules, then 𝑀1is primely compressible 

if and only if 𝑀2 is so. 

Proof: 

 Assume that 𝑀1 is primely compressible and let 𝜑:𝑀1 → 𝑀2 be an 

isomorphism and N be a non-zero prime submodule of 𝑀2.Then 𝜑(𝑀1) ⊄ 𝑁, 

for if 𝜑(𝑀1) ⊂ 𝑁 implies 𝑀2 ⊆ 𝑁 that is 𝑀2 = 𝑁 which is a contradiction 

since N is a prime submodule of 𝑀2. Therefore 𝜑−1(𝑁) is a prime submodule 

of 𝑀1[37,proposition 1.2,p.1043] So, there exists a monomorphism say 

𝑓:𝑀1 → 𝐾 where 𝐾 = 𝜑−1(𝑁)  (since 𝑀1 is primely compressible by 

hypothesis). Let 𝑔
K

 . Then 𝑔: 𝐾 → 𝑀2 is a monomorphism and 𝑔(𝐾) =
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𝜑(𝐾) = 𝜑(𝜑−1(𝑁)) = 𝑁. So 𝑔:𝐾 → 𝑁 is a monomorphism. Now, we have 

the following composition 𝑀2
𝜑−1

→  𝑀1
𝑓
→𝐾

𝑔
→𝑁 is a monomorphism from 𝑀2 

into N which means that  𝑀2 is primely compressible. 

 

       Now, the following condition is needed 

(*) Let M be a module satisfying ∀𝐾 ≤ 𝑁 ≤ 𝑀 if N is a prime submodule of 

M and K is a prime submodule of N, then K is a prime submodule of M. 

Proposition (4.2.4) 

Let M be a module satisfying (*). If M is primely compressible, then 

every non-zero prime submodule of M is also primely compressible. 

Proof: 

 Let M be a primely compressible module and N be a non-zero prime 

submodule of M and K be a non-zero prime submodule of N.As M has 

condition (*) gives K is a prime submodule of M.Therefore there is a 

monomorphism say 𝑓:𝑀 → 𝐾 and hence 𝑖𝑓: 𝐾 → 𝑁 is also a monomorphism 

where 𝑖: 𝐾 → 𝑁 is the inclusion homomorphism. Thus N is purely 

compressible. 

Corollary (4.2.5) 

Let M be a fully prime module which has condition (*). If M is primely 

compressible, then every non-zero submodule of M is primely compressible. 

Corollary (4.2.6) 

Let M be an F-module (F is a field) and M has condition (*). If M is 

primely compressible then every non-zero submodule of M is primely 

compressible. 
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Proof: 

 Let 0 ≠ 𝑁 ≤ 𝑀. Then N is a prime submodule of M since F is a field and by 

proposition (4.2.4) N is primely compressible. 

Corollary(4.2.7) 

     Let M be a prime module which has the condition (*). If M is primely 

compressible, then every non-zero direct summand of M is primely 

compressible. 

Proof: 

 Let N be a non-zero direct summand of M. Then N is a prime submodule of 

M by (Examples and Remarks4.1.2,(4)) and by proposition (4.2.4) N is 

primely compressible. 

Remark (4.2.8) 

The direct sum of primely compressible modules is not necessary 

primely compressible. Consider the following example 

Example (4.2.9) 

Let 𝑀 = 𝑍2 as a Z-module. Clearly 𝑍2 is primely compressible. On the 

other hand 𝑍2⊕𝑍2 is prime Z-module[29,Lemma 1.1,p.305 ] and hence 𝑍2 is 

a prime submodule of 𝑍2⊕𝑍2(Remarks and Examples 4.1.4,(4)) but 𝑍2⊕

𝑍2 cannot be embedded in 𝑍2. Therefore 𝑍2⊕𝑍2 is not primely 

compressible. 

Proposition (4.2.10) 

If M is primely compressible, then M is generalized prime module. 
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Proof: 

 Let M be a primely compressible module. Let N be a non-zero prime 

submodule of M. we have to show that 𝑎𝑛𝑛𝑀 = 𝑎𝑛𝑛𝑁.Let 𝑟 ∈ 𝑎𝑛𝑛𝑁. Then 

𝑟𝑁 = 0. Let 𝑓:𝑀 → 𝑁 be a monomorphism, then 𝑓(𝑟𝑀) = 𝑟𝑓(𝑀) ⊆ 𝑟𝑁 = 0 

implies that 𝑟𝑀 = 0, thus 𝑟 ∈ 𝑎𝑛𝑛𝑀 and therefore 𝑎𝑛𝑛𝑀 = 𝑎𝑛𝑛𝑁. 

Remark (4.2.11) 

The converse of proposition (4.2.10) is not true in general, for 

example, 𝑍2⊕𝑍2 is a prime Z-module and hence generalized prime, but it is 

not primely compressible. 

 

      Next we present the concept of purely uniform module. 

Definition (4.2.12) 

    An R-module M is called primely uniform if the intersection of any two 

non-zero prime submodules of M is non-zero.  

Equivalently, M is primely uniform if every non-zero prime submodule of M 

is primely essential in M. 

Clearly every uniform module is primely uniform  

Proposition (4.2.13) 

A non-zero prime submodule N of a module M is primely essential if and 

only if for each 0 ≠ 𝑥 ∈ 𝑀 with 𝑅𝑥 is a prime submodule of M there exists 

 0 ≠ 𝑟 ∈ 𝑅 such that 0 ≠ 𝑟𝑥 ∈ 𝑁. 

Proof: 

 (⟹) Is clear 



Chapter Four                                        Primely Compressible Modules and Primely Retractable Modules 

 

   97 
 

(⇐) Let K be a non-zero prime submodule of M. Let 0 ≠ 𝑥 ∈ 𝐾 with 𝑅𝑥 is a 

prime submodule of M. Then 0 ≠ 𝑟𝑥 ∈ 𝑁 for some 0 ≠ 𝑟 ∈ 𝑅 (by 

hypothesis). Therefore 0 ≠ 𝑟𝑥 ∈ 𝑁 ∩ 𝐾 implies N is primely essential in M. 

Proposition (4.2.14) 

Every primely compressile module is primely uniform 

Proof: 

 Let N be a prime submodule of M. let  0 ≠ 𝑥 ∈ 𝑀 such that Rx is a prime 

submodule of M. Then there exists a monomorphism, say 𝑓:𝑀 → 𝑅𝑥. Let 

0 ≠ 𝑚 ∈ 𝑁. Then  𝑓(𝑚) = 𝑡𝑥 for some 0 ≠ 𝑡 ∈ 𝑅, and 𝑓(𝑥) = 𝑟𝑥       for 

some  0 ≠ 𝑟 ∈ 𝑅,𝑓(𝑟𝑚) = 𝑟𝑓(𝑚) = 𝑟(𝑡𝑥) = 𝑡(𝑟𝑥) = 𝑡𝑓(𝑥) = 𝑓(𝑡𝑥) 

therefore   𝑟𝑚 = 𝑡𝑥 ∈ 𝑁 and 𝑡𝑥 ≠ 0.So N is primely essential in M and hence 

M is primely uniform. 

 

In the class of faithful finitely generated multiplication modules we give 

the following characterization of primely compressible modules: 

Theorem (4.2.15) 

Let M be a faithful finitely generated multiplication R-module.                

If M is primely compressible, then for each non-zero prime ideal I of R, 

𝑎𝑛𝑛𝑀(𝐼) = 0. 

Proof:  

Let I be a non-zero prime ideal of R. Then 𝑁 = 𝐼𝑀 is a prime submodule of 

M [46,proposition 4.6,p.28] but M is primely compressible implies M is 

generalized prime (by proposition(4.2.10), and hence 𝑎𝑛𝑛𝑅(𝑀) =

𝑎𝑛𝑛𝑅(𝑁) = 𝑎𝑛𝑛𝑅(𝐼𝑀) = 𝑎𝑛𝑛𝑅(𝐼), therefore 𝑎𝑛𝑛𝑅(𝐼) = 0 (since M is 

faithful). Now, to prove  𝑎𝑛𝑛𝑀(𝐼) = 0. Let 𝑎𝑛𝑛𝑀(𝐼) = 𝐾𝑀 for some ideal K 
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of R we have 𝐼𝑎𝑛𝑛𝑀(𝐼) = 0 and hence 𝐼𝐾𝑀 = 0 implies 𝐼𝐾 ⊆ 𝑎𝑛𝑛𝑅𝑀 = 0, 

so 𝐼𝐾 = 0, therefore 𝐾 ⊆ 𝑎𝑛𝑛𝑅(𝐼) = 0, so 𝐾 = 0 and hence 𝑎𝑛𝑛𝑀(𝐼) = 0 

The converse holds in case every non-zero principal ideal of R is prime. 

Theorem (4.2.16) 

Let R be a ring such that every non-zero principal ideal of R is prime. If 

M is a faithful finitely generated multiplication and 𝑎𝑛𝑛𝑀(𝐼) = 0 for each 

non-zero prime ideal I of R, then M is primely compressible. 

Proof: 

 Let N be a non-zero prime submodule of M. then 𝑁 = 𝐼𝑀 for some non-zero 

prime ideal I of R [46,proposition 4.6,p.28]. Let 0 ≠ 𝑎 ∈ 𝐼 and define 𝑓:𝑀 →

𝑁 by 𝑓(𝑚) = 𝑎𝑚 for all 𝑚 ∈ 𝑀. Clearly f is a well-defined homomorphism. 

Let 𝑚 ∈ 𝑘𝑒𝑟𝑓. Then 𝑎𝑚 = 0 therefore 𝑚 ∈ 𝑎𝑛𝑛𝑀(𝑎), but (𝑎) ≤ 𝐼 and I is 

prime in R implies (𝑎) is prime in R by hypothesis. Hence 𝑎𝑛𝑛𝑀(𝑎) = 0 (by 

hypothesis), so 𝑚 = 0 and therefore 𝑘𝑒𝑟𝑓 = 0 which gives M is primely 

compressible. 

Corollary (4.2.17) 

Let M be a faithful finitely generated multiplication R-module. Then M 

is primely compressible if and only if 𝐻𝑜𝑚𝑅(𝑅/𝐼,𝑀) = 0 for each non-zero 

prime ideal I of R. where every non-zero principal ideal of R is prime. 

Proof:  

By [31,Lemma 2.7,p.45], 𝑎𝑛𝑛𝑀(𝐼)≃ 𝐻𝑜𝑚𝑅(𝑅/𝐼,M) for each ideal I of R 

hence the result follows according to theorem (4.2.15) and theorem (4.2.16). 

 



Chapter Four                                        Primely Compressible Modules and Primely Retractable Modules 

 

   99 
 

        Since every cyclic module is a multiplication module, the following are 

also consequences of theorem (4.2.15) and theorem (4.2.16). 

Corollary (4.2.18) 

Let M be a faithful cyclic R-module. Then M is primely compressible if 

and only if 𝑎𝑛𝑛𝑀(𝐼) = 0 for each non-zero prime ideal I of R.  where every 

non-zero principal ideal of R is prime. 

Proof: 

(⇒) follows directly by proposition (4.2.15) 

(⇐)Follows from proposition (4.2.17) 

Corollary (4.2.19) 

A ring R in which every non-zero principal ideal is prime is primely 

compressible if and only if 𝑎𝑛𝑛𝑅(𝐼) = 0 for each non-zero prime ideal I of R. 

Proof: 

(⇒) follows directly by proposition (4.2.15) 

(⇐)Follows from proposition (4.2.17) 

roposition (4.2.20) 

Let M be a faithful finitely generated multiplication R-module, If M is 

primely compressible, then R is primely compressible. 

Proof:  

 Let I be a non-zero prime ideal of R. we have to show that 𝑎𝑛𝑛𝑅(𝐼) = 0. Let 

𝑟 ∈ 𝑎𝑛𝑛𝑅(𝐼). Then 𝑟𝐼 = 0 and hence 𝑟𝐼𝑀 = 0 implies that 𝑟𝑀 ⊆ 𝑎𝑛𝑛𝑀(𝐼). 

But M is primely compressible by hypothesis and according to theorem 
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(4.2.15). 𝑎𝑛𝑛𝑀(𝐼) = 0, hence 𝑟𝑀 = 0, so 𝑟 ∈ 𝑎𝑛𝑛𝑅(𝑀) = 0 since M is 

faithful and hence 𝑟 = 0. Therefore 𝑎𝑛𝑛𝑅(𝐼) = 0 and by corollary (4.2.19), R 

is primely compressible ring. 

Proposition (4.2.21) 

Let R be a primely compressible  ring such that every non-zero principal 

ideal of R is prime. If M is a faithful finitely generated multiplication module, 

then M is primely compressible. 

Proof: 

 Let I be a non-zero prime ideal of R and R is primely compressible gives 

𝑎𝑛𝑛𝑅(𝐼) = 0 by corollary(4.2.19), and it can be checked easily that 

𝑎𝑛𝑛𝑀(𝐼) = (𝑎𝑛𝑛𝑅(𝐼))𝑀 therefore 𝑎𝑛𝑛𝑀(𝐼) = 0, so by theorem (4.2.16) , M 

is primely compressible. 

 

The following proposition is a partial converse of proposition (4.2.10) 

Proposition (4.2.22) 

Let M be a faithful finitely generated multiplication module. If M is 

generalized prime, then M is primely compressible. 

Proof: 

 Let I be a non-zero prime ideal of R. Then IM is a prime submodule of M 

[46,proposition 4.6,p.28] but M is generalized prime (by hypothesis), 

therefore 𝑎𝑛𝑛𝑅(𝑀) = 𝑎𝑛𝑛𝑅(𝐼𝑀) by definition (4.1.3) and since M is faithful 

(by hypothesis) implies 𝑎𝑛𝑛𝑅(𝐼𝑀) = 0 = 𝑎𝑛𝑛𝑅(𝐼). But 𝑎𝑛𝑛𝑀(𝐼) =

(𝑎𝑛𝑛𝑅𝐼)𝑀 = 0.𝑀 = 0. Therefore 𝑎𝑛𝑛𝑀(𝐼) = 0 implies that M is primely 

compressible (by theorem (4.2.16). 
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Corollary(4.2.23) 

Let M be a faithful finitely generated multiplication R-module then M is 

primely compressible if and only if M is generalized prime. 

Proof:  

Follows from proposition (4.2.10) and proposition (4.2.22). 

Corollary (4.2.24) 

Let M be a faithful cyclic R-module then M is primely compressible if 

and only if M is generalized prime. 

Corollary (4.2.25) 

A ring R is primely compressible if and only if R is generalized prime. 

Now, we need to state and prove the following lemma. 

Lemma (4.2.26) 

Let R be a ring in which every principal ideal of R is prime. If P is a 

generalized prime ideal of R, then R/P is primely uniform R-module 

Proof: 

Let 𝑃 ≠ 𝐴/𝑃 be a prime submodule of R/P. To prove A/P is primely 

essential in R/P. Let 𝑃 ≠ 𝑥 + 𝑃 ∈ 𝑅/𝑃 with 𝑅(𝑥 + 𝑃) is a prime submodule 

of R/P. Let 𝑃 ≠ 𝑎 + 𝑃 ∈ 𝐴/𝑃. Suppose that 𝑎𝑥 ∈ 𝑃 we have 𝑎 ∉ 𝑃, 𝑥 ∉ 𝑃 

and Rx is prime in R implies that 𝑎 ∈ [𝑃: 𝑅]. Hence 𝑎𝑅 ⊆ 𝑃 gives 𝑎 ∈ 𝑃 

which is a contradiction. Therefore 𝑎𝑥 ∉ 𝑃 that is 𝑃 ≠ 𝑎𝑥 + 𝑃 = 𝑎(𝑥 + 𝑃) ∈

𝐴/𝑃 which completes the proof. 
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Theorem (4.2.27) 

Let R be a ring in which every principal ideal is prime. Let M be a Z-

regular faithful finitely generated multiplication R-module which satisfy 

condition (*)such that a non-zero cyclic submodule of a direct summand of M 

is prime submodule of M. Then the following statements are equivalent: 

(1) M is primely compressible. 

(2) M is isomorphic to an R-module of the form A/P for some  generalized 

prime ideal P of R and an ideal A of R containing P properly. 

(3) M is isomorphic to a non-zero submodule of a finitely generated primely 

uniform, generalized prime R-module. 

Proof:  

(1)⟹(2) 

 Let 0 ≠ 𝑚 ∈ 𝑀 and 𝑅𝑚 is prime in M. Then 𝑅𝑚 is primely compressible by 

proposition (4.2.4). Hence 𝑅𝑚 is generalized prime by proposition (4.2.10). 

As M is primely compressible, then there is a monomorphism, say 𝑓:𝑀 →

𝑅𝑚 that is M is isomorphic to a submodule of 𝑅𝑚. But 𝑅𝑚 ≃ 𝑅/𝑎𝑛𝑛(𝑚) and 

by proposition (4.2.10) M is generalized prime R-module implies that 

𝑎𝑛𝑛(𝑚)  is a prime ideal of R by proposition (4.1.10). Let P = 𝑎𝑛𝑛(𝑚). Then 

𝑅𝑚 ≃ 𝑅/𝑃 and M is isomorphic to a submodule of 𝑅/𝑃, say 𝐴/𝑃 where A is 

an ideal of R containing P properly. 

(2) ⟹(3) 

 By (2), 𝑀 ≃ 𝐴/𝑃 for some generalized prime ideal P of R and an ideal A of R 

containing P properly, hence A/P is a non-zero submodule of the finitely 

generated module R/P. On the other hand R/P is a generalized R-module by 
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(corollary 4.1.7) and by lemma (4.1.26), R/P is primely uniform and hence (3) 

follows. 

 (3) ⟹(1) 

 By (3), M is isomorphic to a non-zero submodule of a finitely generated 

primely uniform and generalized prime R-module, say 𝑀̀,and according to 

(proposition(4.2.22) 𝑀̀ is primely compressible R-module hence M is primely  

compressible R-module (by proposition (4.2.3)). 

Corollary (4.2.28) 

Let R be a ring in which every principal ideal is prime. Let M be a Z-

regular cyclic faithful R-module which satisfy condition (*)such that a non-

zero cyclic submodule of a direct summand of M is prime submodule of M. 

Then the following statements are equivalent: 

 (1) M is primely compressible 

(2) M is isomorphic to an R-module of the form A/P for some generalized 

prime ideal P of R and an ideal A of R containing P properly. 

(3) M is isomorphic to a non-zero submodule of a finitely generated primely 

uniform, generalized prime R-module. 

 

4.3. Primely Critically Compressible Modules 

A special type of primely compressible modules is given and studied in 

this section, namely primely critically compressible module. 
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Definition (4.3.1) 

An R-module M is called primely critically compressible if M is primely 

compressible and M cannot be embedded in any of its quotient module M/N 

with N is a non-zero proper prime submodule of M. 

Examples and Remarks (4.3.2) 

(1) Every critically compressible module is primely critically compressible 

the converse is not true in general, for example: the Z-module Q is primely 

critically compressible but not critically compressible. 

(2)Z as a Z-module is primely critically compressible. 

(3) 𝑍𝑛 as a Z-module is not primely critically compressible.  

(4) 𝑍𝑝∞  as a Z-module is not primely critically compressible. 

(5) If R is an integral domain and K is the field of fraction of R, then(0) is the 

only prime submodule of K as an R-module [29] so, K ia a primely  critically 

compressible R-module. 

(6) Every simple module is primely critically compressible. 

(7) If M is a fully prime module, then M is primely critically compressible if 

and only if M is critically compressible. 

Proposition (4.3.3) 

Let M be a primely critically compressible module satisfying (*), then 

every non-zero prime submodule of M is also primely  critically compressible. 

Proof: 

 Let N be a non-zero prime submodule of M. Then N is primely compressible 

by (proposition 4.2.4).Let H be a prime submodule of N. Then H is prime in 
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M (since M satisfying (*)) and it can easily that N/H is prime in M/H Suppose 

that there is a monomorphism, say 𝛼:𝑁 → 𝑁/𝐻. But M is primely 

compressible implies that there is a monomorphism, say 𝑓:𝑀 → 𝑁. Then the 

composition M
𝑓
→  𝑁

𝛼
→  𝑁/𝐻

𝑖
→𝑀/𝐻 is a monomorphism where i is the 

inclusion homomorphism. So M is embedded in M/H which is a contradiction 

since M is primely critically compressible. Hence N is primely critically 

compressible. 

Corollary (4.3.4) 

A non-zero direct summand of a prime and primely critically 

compressible module satisfying (*) is also primely critically compressible. 

    Now, we need to introduce the following concept: 

Definition (4.3.5) 

A prime partial endomorphism of a module M is a homomorphism from 

a prime submodule of M into M. 

Examples (4.3.6) 

(1) If N is a prime submodule of a module M, then the inclusion 

homomorphism 𝑖: 𝑁 → 𝑀 is a prime partial endomorphism of M. 

(2) If N is a direct summand of a prime R-module M, then every 

homomorphism from N into M is a prime partial endomorphism of M.  

(3) If M is a fully prime module. Then every partial endomorphism of M is a 

prime partial endomorphism of M. 
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Proposition (4.3.7) 

Let M be a fully stable module which satisfying (*). If M is primely 

critically compressible, then every non-zero primely partial endomorphism of 

M is a monomorphism. 

Proof: 

 Let N be a non-zero prime submodule of M and 𝑓:𝑁 → 𝑀 be a non-zero 

partial endomorphism then 
𝑁

𝑘𝑒𝑟𝑓
≃ 𝑓(𝑁). Each of 𝑘𝑒𝑟𝑓 and 𝑓(𝑁) is prime in 

M since M satisfying(*)and since M is primely compressible then there is a 

monomorphism,say 𝑓:𝑀 → 𝑓(𝑁).Then  the compositin𝑀
𝑓
→  𝑓(𝑁)

is o .


  𝑁/𝑘𝑒𝑟𝑓

in c l.

i
   𝑀/𝑘𝑒𝑟𝑓 is an embedding of M into 𝑀/𝑘𝑒𝑟𝑓 which 

is a contradiction since M is primely critically compressible. Therefore 

𝑘𝑒𝑟𝑓 = 0 and hence f is a monomorphism. 

Proposition (4.3.8) 

Let M be a prime module. If M is primely critically compressible, then M 

is indecomposable but not conversely. 

Proof:  

Let M be a primely critically compressible module. Suppose that M is 

decomposable. Then 𝑀 = 𝐴⨁𝐵 with A and B are non-zero proper prime 

submodules of M. So,  𝐵 ≃ 𝑀/𝐴. Let 𝛼: 𝐵 → 𝑀/𝐴 be an isomorphism but M 

is primely compressible, hence there is a monomorphism say 𝑓:𝑀 → 𝐵 and 

therefor 𝛼𝑓:𝑀 → 𝑀/𝐴 is a monomorphism, which is a contradiction. 

For the converse Z as a Q-module is indecomposable but not primely 

critically compressible. 
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4.4 Primely Retractable Modules 

In this section we introduce and study the concept primely retractable 

module as a generalization of retractable module. Some characterizations of 

such modules are given. Moreover, the relationships between this concept and 

some other types of module are also investigated. 

Definition (4.4.1) 

An R-module M is called primely retractable if 𝐻𝑜𝑚(𝑀,𝑁) ≠ 0 for 

each non-zero prime submodule N of M. 

A ring R is called primely retractable if the R-module R is primely retractable  

Remarks and Examples (4.4.2) 

(1) Every retractable module is primely retractable, but not conversely, for 

example: Q as a Z-module is primely retractable since 0 is the only prime 

submodule of Q, and Q is not retractable since 𝐻𝑜𝑚(𝑄, 𝑍) = 0. 

(2) If M is a fully prime module, then M is primely retractable if and only if M 

is retractable. 

(3) Every primely compressible module is primely retractable and the 

converse need not be true in general. For example,𝑍12 as a Z-module is 

primely retractable but not primely compressible.  

(4) Every simple module is primely retractable but not conversely. 

(5) Let M be an R-module. Then M is primely retractable R-module if and 

only if M is primely retractable 𝑅/𝑎𝑛𝑛𝑀-module. 
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(6) Let M be a torsion-free module such that [𝑁:𝑀] = 0 for each proper 

submodule N of M. Then M is primely retractable if and only if M is purely 

retractable. 

Proof: 

 As in the proof of (Examples and Remarks 4.2.2,5) and (3). 

 (7) Let M be a prime faithful module such that [𝑁:𝑀] = 0 for each proper 

submodule N of M. Then M is primely retractable if and only if M is a purely 

retractable. 

Proof: 

 As in the proof of (Examples and Remarks 4.2.2,6) and (3). 

 (8) Let M be a prime module such that 𝑎𝑛𝑛𝑀 = [𝑁:𝑀] for each proper 

submodule N of M. Then M is primely retractable if and only if M is purely 

retractable. 

Proof: 

 As in the proof of (Examples and Remarks 4.2.2,7) and (3). 

Proposition (4.4.3) 

If 𝑀1 and 𝑀2 are two isomorphic modules, then 𝑀1 is primely 

retractable if and only if 𝑀2 is so. 

Proof: 

 As in the proof of proposition (4.2.3) and proof (1.2.3). 
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Proposition (4.4.4) 

        Let M be an R-module satisfying (*) such that 𝐸𝑛𝑑𝑅(𝑀) is a Boolean 

ring. If M is primely retractable, then every submodule of M is also primely 

retractable. 

Proof: 

 As in the proof of proposition (1.2.7). 

Corollary (4.4.5) 

Let M be a module satisfying (*) such that 𝐸𝑛𝑑(𝑀) is a Boolean ring. If 

M is primely retractable, then every direct summand of M is also primely 

retractable. 

       We are now going to investigate when a primely retractable module is 

primely compressible. 

Proposition (4.4.6) 

Let M be a primely retractable quasi-Dedekind R-module, then M is a 

primely compressible. 

Proof: 

 Let N be a non-zero prime submodule of M and let 𝑓:𝑀 → 𝑁 be a non-zero 

homomorphism. Then 𝑓𝑖:𝑀 → 𝑀 is an endomorphism on M, where 𝑖: 𝑁 → 𝑀 

is the inclusion homomorphism. By hypothesis 𝑖𝑓 is a monomorphism and 

hence f is a monomorphism. Therefore M is primely compressible 

Corollary (4.4.7) 

Let M be a primely retractable quasi-Dedekind module. Then M is 

generalized prime and primely uniform. 



Chapter Four                                        Primely Compressible Modules and Primely Retractable Modules 

 

   110 
 

Proof: 

 By corollary (4.4.6), M is primely compressible and according to proposition 

(4.2.10) and (4.2.14), M is generalized prime and primely uniform. 

 

5. Some Characterizations of Primely Retractable Module 

As a characterization of primely retractable module we have the 

following proposition 

Proposition (4.5.1) 

Let M be a module. Then M is primely retractable if and only if there 

exists 0 ≠ 𝜑 ∈ 𝐸𝑛𝑑
R
(𝑀) such that 𝐼𝑚 𝜑 ⊆ 𝑁 for each non-zero prime 

submodule N of M. 

Proof: 

 (⇒) Suppose that M is primely retractable. Let N be a non-zero prime 

submodule of M. Then 𝐻𝑜𝑚
R
(𝑀,𝑁) ≠ 0. Let 0 ≠ 𝑓:𝑀 → 𝑁 be a non-zero 

homomorphism. Let 𝜑 = 𝑖𝑓 where  𝑖: 𝑁 → 𝑀 be the inclusion homo-

morphism, then  𝜑 ∈  𝐸𝑛𝑑
R
(𝑀), 𝜑 ≠ 0   and 𝐼𝑚𝜑 = 𝑖𝑓(𝑀) = 𝑓(𝑀) ⊆ 𝑁. 

(⇐) To prove M is primely retractable, let N be a non-zero prime submodule 

of M. By hypothesis, there exists a non-zero endomorphism 𝜑:𝑀 → 𝑀 such 

that 𝐼𝑚𝜑 = 𝜑(𝑀) ⊆ 𝑁, hence 𝜑:𝑀 → 𝑁 is a non-zero homomorphism, thus 

0 ≠ 𝜑 ∈ 𝐻𝑜𝑚(𝑀,𝑁), therefore M is primely retractable. 

Proposition (4.5.2) 

Let M be a module such that every cyclic submodule of a prime 

submodule of M is prime in M. Then M is primely retractable if and only if 

𝐻𝑜𝑚(𝑀, 𝑅𝑥) ≠ 0 for each 0 ≠ 𝑥 ∈ 𝑀. 
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Proof: 

 (⇒) Obvious. 

(⇐) Let N be a non-zero prime submodule of M. Let 0 ≠ 𝑥 ∈ 𝑁. By 

hypothesis 𝑅𝑥 is prime in M and 𝐻𝑜𝑚(𝑀,𝑅𝑥) ≠ 0 and hence 𝐻𝑜𝑚(𝑀,𝑁) ≠

0, therefore M is primely retractable. 

Corollary (4.5.3) 

Let M be a module in which every cyclic submodule of M is prime. Then 

M is primely retractable if and only if 𝐻𝑜𝑚(𝑀, 𝑅𝑥) ≠ 0 for each 0 ≠ 𝑥 ∈ 𝑀. 

Corollary (4.5.4) 

Every finitely presented prime module is primely retractable. 

Proof:  

Let M be a f.p. prime module. Let 0 ≠ 𝑥 ∈ 𝑀, Then 𝑅𝑥 is a direct summand 

of M[44, ,Exercies 32,p.163]. Therefore 𝐻𝑜𝑚(𝑀, 𝑅𝑥) ≠ 0 and according to 

(corollary (4.5.3)) M is primely retractable. 

Corollary (4.5.5) 

Every prime finitely generated projective module is primely retractable. 

Proof:  

Let M be a prime finitely generated projective module. Then M is finitely 

presented [44,Exercies 1,p.159] and by (corollary (4.5.4)) M is primely 

retractable. 

 

In the following proposition we also give a sufficient condition for a 

module to by primely retractable. 
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Proposition (4.5.6) 

Let M be a module such that every non-zero prime submodule of M 

contains a non-zero direct summand of M. Then M is primely retractable. 

Proof: 

 Let N be a non-zero prime submodule of M. By hypothesis there is 0 ≠ 𝐴 ≤

𝑁 and A is a direct summand of M. So, 𝑀 = 𝐴⨁𝐵  for some  0 ≠ 𝐵 < 𝑀 . 

Let 𝜌𝐴:𝑀 → 𝐴 be the projection homomorphism. Therefore 𝜌𝐴 ∈ 𝐻𝑜𝑚(𝑀, 𝐴) 

and 𝑖𝜌𝐴 ∈ 𝐻𝑜𝑚(𝑀,𝑁) where 𝑖: 𝐴 → 𝑁 is the inclusion homomorphism. If  

𝑖𝜌𝐴 = 0, then 0 = 𝑖𝜌𝐴(𝑀) = 𝜌𝐴(𝑀) ≃ 𝐴 implies 𝐴 = 0 which is a 

contradiction therefore 𝐻𝑜𝑚(𝑀,𝑁) ≠ 0, hence M is primely retractable. 

 

Now the following proposition gives a sufficient condition for a primely 

retractable module to be retractable: 

Proposition (4.5.7) 

Let M be a prime module such that every non-zero submodule of M 

contains a non-zero direct summand of M. if M is primely retractable, then M 

is retractable. 

Proof: 

 Let 0 ≠ 𝑁 ≤ 𝑀. By hypothesis there is a direct summand of M, say K and 

𝐾 ⊆ 𝑁. Then K is prime in M [12,proposition 1.2,p.34] As M is primely 

retractable implies 𝐻𝑜𝑚(𝑀,𝐾) ≠ 0 and hence 𝐻𝑜𝑚(𝑀,𝑁) ≠ 0. Therefore M 

is retractable. 
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Corollary (4.5.8) 

Let M be a prime module such that every non-zero submodule of M 

contains a non-zero direct summand of M. Then M is retractable if and only if 

M is primely retractable. 

Proposition (4.5.9) 

Let M be a finitely generated multiplication R-module. then M is primely 

retractable module. 

Proof: 

 Let N be a non-zero prime submodule of M. Then 𝑁 = 𝐼𝑀 for some non-zero 

prime ideal I of R. [46]. But R is primely retractable by( Examples and 

Remarks1.2.2,(1)) implies that 𝐻𝑜𝑚(𝑅, 𝐼) ≠ 0. Let 0 ≠ 𝑓: 𝑅 → 𝐼 be a 

homomorphism. Let 𝑓(1) = 𝑎. Then 𝑎 ≠ 0. Define 𝑔:𝑀 → 𝑁 by 𝑔(𝑀) =

𝑎𝑚 for all 𝑚 ∈ 𝑀 clearly, g is a well-defined homomorphism, 𝑔 ≠ 0 since M 

is faithful. Therefore 𝐻𝑜𝑚(𝑀,𝑁) ≠ 0 this is what we wanted. 

Corollary (4.5.10) 

Every faithful cyclic R-module is also primely retractable. 

    Now, we introduce the concept of primely epi-retractable module as 

follows: 

Definition (4.5.11) 

A module M is called primely epi-retractable if every prime submodule 

of M is a homomorphic image of M. That is, whenever N is a prime 

submodule of M, then there exists an epimorphism from M onto N. 
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Examples and Remarkes (4.5.12) 

(1) Every primely epi-retractable module is primely retractable.  

(2) Q as a Z-module is primely epi-retractable. 

(3) 𝑍12 as a Z-module is primely epi-retractable module. 

(4) Every semisimple module is primely epi-retractable. 

(5) If M is a fully prime module, then M is primely epi-retractable if and only 

if M is epi-retractable. 

Proposition (4.5.13) 

Let M be a module satisfying (*). If M  primely epi-retractable module, 

then every non-zero prime submodule of M is also primely epi-retractable. 

Proof:  

Let M be a primely epi-retractable module and let N be a non-zero prime 

submodule of M. let K be a non-zero prime submodule of N. Then K is prime 

in M (since M satisfying (*)). Therefore there are epimorphisms 𝑓:𝑀 → 𝑁 

and 𝑔:𝑀 → 𝐾. Define ℎ:𝑁 = 𝑓(𝑀) → 𝐾 = 𝑔(𝑀) by ℎ(𝑓(𝑚)) = 𝑔(𝑚) for 

all 𝑚 ∈ 𝑀. Clearly ℎ ∈ 𝐻𝑜𝑚(𝑁,𝐾).  ℎ ≠ 0, for if ℎ = 0. Then ℎ(𝑓(𝑀)) =

0 = 𝑔(𝑀) = 𝐾 which is a contradiction. Moreover h is an epimorphism, 

since ℎ(𝑁) = ℎ(𝑓(𝑀)) = 𝑔(𝑀) = 𝐾. Thus N is primely epi-retractable. 

Corollary (4.5.14) 

A direct summand of a prime and primely epi-retractable module is also 

primely epi-retractable. 
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roposition (4.5.15) 

Let M be a primely epi-retractable module. Then M/N is primely epi-

retractable. 

Proof: 

 Let 0̅ ≠ 𝐾/𝑁 be a prime submodule of 𝑀/𝑁, where K is a proper submodule 

of M containing N properly. 𝐾/𝑁 is prime in 𝑀/𝑁 implies that K is prime in 

M [38,corollary 3.9]. Hence there is an epimorphism, say 𝑓:𝑀 → 𝐾 (since M 

is primely epi-retractable by hypothesis). f induces a homomorphism 𝑓:̅𝑀/

𝑁 → 𝐾/𝑁 with 𝑓(̅𝑚 + 𝑁) = 𝑓(𝑚) + 𝑁 for all 𝑚 ∈ 𝑀.𝑓̅ ≠ 0, for if 𝑓̅ = 0, 

then 0̅ = 𝑓(̅𝑀/𝑁)= 𝑓(𝑀) + 𝑁 = 𝐾 +𝑁 (since f is an epimorphism). Hence 

𝐾 + 𝑁 = 𝑁 implies 𝐾 = 𝑁 which is a contradiction. Therefore 𝐻𝑜𝑚(𝑀/

𝑁, 𝐾/𝑁)≠ 0. Moreover 𝑓(̅𝑀/𝑁) = 𝐾/𝑁. Thus M/N is primely epi-

retractable. 

Lemma (4.5.16) 

Let 𝑀1 and 𝑀2 be two R-module. If 𝑁1⨁𝑁2 is a prime submodule of 𝑀1⨁𝑀2. 

Then 𝑁1 is a prime submodule of 𝑀1 and 𝑁2 is prime submodule of 𝑀2. 

Proof: 

 Let 𝑟 ∈ 𝑅 and 𝑥 ∈ 𝑀1 such that 𝑟𝑥 ∈ 𝑁1.Then 𝑟(𝑥, 0) ∈ 𝑁1⨁𝑁2 So 

either(𝑥, 0) ∈ 𝑁1⨁𝑁2 or 𝑟 ∈ [𝑁1⨁𝑁2:𝑀1⨁𝑀2] (since 𝑁1⨁𝑁2is a prime 

submodule of 𝑀1⨁𝑀2 by hypothesis). If (𝑥, 0) ∈ 𝑁1⨁𝑁2 implies 𝑥 ∈ 𝑁1.If 

𝑟 ∈ [𝑁1⨁𝑁2:𝑀1⨁𝑀2],then 𝑟(𝑚1, 𝑚2) ∈ 𝑁1⨁𝑁2 for all 𝑚1 ∈ 𝑀1,for all 

𝑚2 ∈ 𝑀2.Therefore 𝑟𝑚1 ∈ 𝑁1 for all 𝑚1 ∈ 𝑀1,So 𝑟 ∈ [𝑁1:𝑀1] and hence 𝑁1 

is prime submodule of 𝑀1.similarly we prove that 𝑁2 is prime submodule of 

𝑀2. 
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Proposition (4.5.17) 

Let 𝑀1 and 𝑀2be two primely epi-retractable modules such that 

𝑎𝑛𝑛𝑀1 + 𝑎𝑛𝑛𝑀2 = 𝑅. Then 𝑀1⨁𝑀2 is also primely epi-retractable. 

Proof: 

 Let N be a non-zero prime submodule of 𝑀1⨁𝑀2. Then 𝑁 = 𝑁1⨁𝑁2 for 

some submodule 𝑁1 of 𝑀1 and 𝑁2of 𝑀2. By [31,proposition 4.2 ] and by 

Lemma (4.5.16) 𝑁1 is prime in 𝑀1 and 𝑁2 is prime in 𝑀2. Therefore there are 

epimorphisms 𝑓:𝑀1 → 𝑁1 and 𝑔:𝑀2 → 𝑁2. Define ℎ:𝑀1⨁𝑀2 → 𝑁 by 

ℎ(𝑚1, 𝑚2) = (𝑓(𝑚1), 𝑔(𝑚2)) for all (𝑚1, 𝑚2) ∈ 𝑀1⨁𝑀2. Clearly, h is a 

non-zero homomorphism and h is an epimorphism. Therefore 𝑀1⨁𝑀2 is 

primely epi-retractable. 

Corollary (4.5.18) 

Let {𝑀𝑖}𝑖=1
𝑛 be a finite family of primely epi-retractable modules such 

that ∑ 𝑎𝑛𝑛𝑀𝑖 = 𝑅
𝑛
𝑖=1 . Then ⨁𝑖=1

𝑛 𝑀𝑖 is also primely epi-retractable. 
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Future Works 

 

For future work the following problems could be recommended 

1- Purely prime modules and purely prime submodules. 

2- Purely Epi-retractable modules. 

3- Generalized prime modules and Generalized prime submodules. 

4- Primely uniform modules. 

5- Primely Epi-retractable module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

    
 

 

 المستخلص

. Rمقاسات يساريه احاديه على  Nو  Mذات عنصر محايد, ولتكن حلقة ابداليه    Rلتكن 

. من المعروف ان خواص و Nالى   Mمجموعة كل التشاكلات المقاسية من    𝐻𝑜𝑚𝑅(𝑀,𝑁)ولتكن

  Nو  R ,Mخواص و تمييزات ممكن ان تحدد عن طريق  Rكمقاس على  𝐻𝑜𝑚𝑅(𝑀,𝑁)تمييزات 

خواص و ممكن ان تحدد عن طريق  Nو  R ,Mخواص و تمييزات وكذلك بعض  

. بعض  𝐻𝑜𝑚𝑅(𝑀,𝑁), لذا فان العديد من الباحثين اهتموا بدراسة 𝐻𝑜𝑚𝑅(𝑀,𝑁)تمييزات

𝐻𝑜𝑚𝑅(𝑀,𝑁)الدراسات تركزت حول استخدام خاصية  غير صفري من  Nلكل مقاس جزئي   0≠

M   في هذه الحاله يطلق علىM  بينما اذا كان كل مقاس جزئي غير صفري من المنكمشةبانه مقاس ,

M  لـ  نسخةيحوي علىM مجموعة  بمعنى انه يوجد تشاكل متباين في𝐻𝑜𝑚𝑅(𝑀,𝑁)  فيطلق على

M  المقاسات  صنف فيا محتوات فعلي منضغطهالمقاسات الصنف من الواضح ان  منضغط,بانه مقاس

    .منكمشةال

المقاسات و المنضغطه الصغيرة المقاسات  حول سوف نعطي دراسة مفصلةهذا العمل  في

تم  منكمشةالالمقاسات ومنضغطه اللمقاسات لفضلاً على ذلك, اعمامات اخرى   ,منكمشة الصغيرةال

المقاسات  واخيراً  ,منكمشة النقيهالمقاسات الو منضغطه النقيةتقديمها ودراستها مثل المقاسات ال

 والمقاسات المنكمشة الاولية.المنضغطه الاولية 

 

 

 

 

 


